-
1
-
-
0000241853
-
Deterministic non-periods flows
-
10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2
-
E.N. Lorenz 1963 Deterministic non-periods flows J. Atmos. Sci. 20 130 141 10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2
-
(1963)
J. Atmos. Sci.
, vol.20
, pp. 130-141
-
-
Lorenz, E.N.1
-
2
-
-
49549126801
-
An equation for continuous chaos
-
10.1016/0375-9601(76)90101-8
-
O.E. Rösser 1976 An equation for continuous chaos Phys. Lett. A 57 397 398 10.1016/0375-9601(76)90101-8
-
(1976)
Phys. Lett. A
, vol.57
, pp. 397-398
-
-
Rösser, O.E.1
-
3
-
-
0034238522
-
Bifurcation analysis of Chen's attractor
-
1090.37531 1787214
-
T. Ueta G. Chen 2000 Bifurcation analysis of Chen's attractor Int. J. Bifurcat. Chaos 10 1917 1931 1090.37531 1787214
-
(2000)
Int. J. Bifurcat. Chaos
, vol.10
, pp. 1917-1931
-
-
Ueta, T.1
Chen, G.2
-
5
-
-
77955278626
-
Observer-based decentralized fuzzy neural sliding mode control for interconnected unknown chaotic systems via network structure adaptation
-
10.1016/j.fss.2010.03.006 1194.93065
-
D. Lin X. Wang 2010 Observer-based decentralized fuzzy neural sliding mode control for interconnected unknown chaotic systems via network structure adaptation Fuzzy Sets Syst. 161 2066 2080 10.1016/j.fss.2010.03.006 1194.93065
-
(2010)
Fuzzy Sets Syst.
, vol.161
, pp. 2066-2080
-
-
Lin, D.1
Wang, X.2
-
6
-
-
78649932207
-
Dynamic fuzzy neural networks modeling and adaptive backstepping tracking control of uncertain chaotic systems
-
10.1016/j.neucom.2010.08.008
-
D. Lin X. Wang F. Nian Y. Zhang 2010 Dynamic fuzzy neural networks modeling and adaptive backstepping tracking control of uncertain chaotic systems Neurocomputing 73 2873 2881 10.1016/j.neucom.2010.08.008
-
(2010)
Neurocomputing
, vol.73
, pp. 2873-2881
-
-
Lin, D.1
Wang, X.2
Nian, F.3
Zhang, Y.4
-
7
-
-
78049485631
-
Projective synchronization of nonlinear-coupled spatiotemporal chaotic systems
-
10.1007/s11071-010-9744-0
-
X. Wang M. Wang 2010 Projective synchronization of nonlinear-coupled spatiotemporal chaotic systems Nonlinear Dyn. 62 567 571 10.1007/s11071-010- 9744-0
-
(2010)
Nonlinear Dyn.
, vol.62
, pp. 567-571
-
-
Wang, X.1
Wang, M.2
-
8
-
-
67651120079
-
Chaos synchronization basing on symbolic dynamics with non-generating partition
-
10.1063/1.3125763
-
X. Wang M. Wang Z. Liu 2009 Chaos synchronization basing on symbolic dynamics with non-generating partition Chaos 19 023108 10.1063/1.3125763
-
(2009)
Chaos
, vol.19
, pp. 023108
-
-
Wang, X.1
Wang, M.2
Liu, Z.3
-
9
-
-
68349127120
-
Controlling the uncertain multi-scroll critical chaotic system with input nonlinear using sliding mode control
-
10.1142/S0217984909020187 1168.37312
-
X. Wang D. Lin Z. Wang 2009 Controlling the uncertain multi-scroll critical chaotic system with input nonlinear using sliding mode control Mod. Phys. Lett. B 23 2021 2034 10.1142/S0217984909020187 1168.37312
-
(2009)
Mod. Phys. Lett. B
, vol.23
, pp. 2021-2034
-
-
Wang, X.1
Lin, D.2
Wang, Z.3
-
10
-
-
67651219016
-
Estimating the ultimate bound and positively invariant set for a new chaotic system and its application in chaos synchronization
-
10.1016/j.chaos.2009.04.003 1198.93152
-
Y.L. Shu H.X. Xu Y.H. Zhao 2009 Estimating the ultimate bound and positively invariant set for a new chaotic system and its application in chaos synchronization Chaos Solitons Fractals 42 2852 2857 10.1016/j.chaos.2009.04.003 1198.93152
-
(2009)
Chaos Solitons Fractals
, vol.42
, pp. 2852-2857
-
-
Shu, Y.L.1
Xu, H.X.2
Zhao, Y.H.3
-
11
-
-
77950865742
-
Coexistence of anti-phase and complete synchronization in the generalized Lorenz system
-
10.1016/j.cnsns.2009.11.020 1222.93126 2610647
-
Q. Zhang J. Lü S. Chen 2010 Coexistence of anti-phase and complete synchronization in the generalized Lorenz system Commun. Nonlinear Sci. Numer. Simul. 15 3067 3072 10.1016/j.cnsns.2009.11.020 1222.93126 2610647
-
(2010)
Commun. Nonlinear Sci. Numer. Simul.
, vol.15
, pp. 3067-3072
-
-
Zhang, Q.1
Lü, J.2
Chen, S.3
-
13
-
-
33746353524
-
Problems of nonlinear and turbulent process in physics
-
Kiev (in Russian)
-
Leonov, G.A.; Abramovich, S.M.; Bunin, A.I.: Problems of nonlinear and turbulent process in physics. In: Proc. of Second International Working Group, Kiev (in Russian), Part II, pp. 75-77 (1985)
-
(1985)
Proc. of Second International Working Group
, Issue.PART II
, pp. 75-77
-
-
Leonov . G, A.1
Abramovich . S, M.2
Bunin . A, I.3
-
15
-
-
84984076276
-
Attractor localization of the Lorenz system
-
10.1002/zamm.19870671215 0653.34040 928581
-
G.A. Leonov A.I. Bunin N. Koksch 1987 Attractor localization of the Lorenz system Z. Angew. Math. Mech. 67 649 656 10.1002/zamm.19870671215 0653.34040 928581
-
(1987)
Z. Angew. Math. Mech.
, vol.67
, pp. 649-656
-
-
Leonov, G.A.1
Bunin, A.I.2
Koksch, N.3
-
16
-
-
0035911773
-
Bounds for trajectories of the Lorenz equations: An illustration of how to choose Liapunov functions
-
DOI 10.1016/S0375-9601(01)00109-8, PII S0375960101001098
-
P. Swinnerton-Dyer 2001 Bounds for trajectories of the Lorenz equations: an illustration of how to choose Liapunov functions Phys. Lett. A 281 161 167 10.1016/S0375-9601(01)00109-8 0984.37022 1822633 (Pubitemid 32233633)
-
(2001)
Physics Letters, Section A: General, Atomic and Solid State Physics
, vol.281
, Issue.2-3
, pp. 161-167
-
-
Swinnerton-Dyer, P.1
-
17
-
-
33746381950
-
On the new results of global attractive set and positive invariant set of the Lorenz chaotic system and the applications to chaos control and synchronization
-
DOI 10.1360/04yf0087
-
X. Liao Y. Fu S. Xie 2005 On the new results of global attractive set and positive invariant set of the Lorenz chaotic system and the applications to chaos control and synchronization Sci. China Ser. F Inform. Sci. 48 304 321 10.1360/04yf0087 1187.37047 2158580 (Pubitemid 44113761)
-
(2005)
Science in China, Series F: Information Sciences
, vol.48
, Issue.3
, pp. 304-321
-
-
Liao, X.1
Fu, Y.2
Xie, S.3
-
18
-
-
4243055985
-
Estimating the bounds for the Lorenz family of chaotic systems
-
10.1016/j.chaos.2004.05.021 1061.93506 2089658
-
D. Li J. Lu X. Wu G. Chen 2005 Estimating the bounds for the Lorenz family of chaotic systems Chaos Solitons Fractals 23 529 534 10.1016/j.chaos.2004.05.021 1061.93506 2089658
-
(2005)
Chaos Solitons Fractals
, vol.23
, pp. 529-534
-
-
Li, D.1
Lu, J.2
Wu, X.3
Chen, G.4
-
19
-
-
33750606677
-
Estimating the ultimate bound and positively invariant set for the Lorenz system and a unified chaotic system
-
DOI 10.1016/j.jmaa.2005.11.008, PII S0022247X05011479
-
D. Li J. Lu X. Wu G. Chen 2006 Estimating the ultimate bound and positively invariant set for the Lorenz system and a unified chaotic system J. Math. Anal. Appl. 323 844 853 10.1016/j.jmaa.2005.11.008 1104.37024 2260147 (Pubitemid 44688526)
-
(2006)
Journal of Mathematical Analysis and Applications
, vol.323
, Issue.2
, pp. 844-853
-
-
Li, D.1
Lu, J.2
Wu, X.3
Chen, G.4
-
20
-
-
33845518527
-
New estimations for globally attractive and positive invariant set of the family of the Lorenz systems
-
DOI 10.1142/S0218127406016860, PII S0218127406016860
-
P. Yu X.X. Liao 2006 New estimations for globally attractive and positive invariant set of the family of the Lorenz system Int. J. Bifurcat. Chaos 16 3383 3390 10.1142/S0218127406016860 1116.37026 2288588 (Pubitemid 46352363)
-
(2006)
International Journal of Bifurcation and Chaos
, vol.16
, Issue.11
, pp. 3383-3390
-
-
Yu, P.1
Liao, X.2
-
22
-
-
64949138913
-
Solution bounds of generalized Lorenz chaotic systems
-
10.1016/j.chaos.2007.08.015 1197.37043
-
Y. Sun 2009 Solution bounds of generalized Lorenz chaotic systems Chaos Solitons Fractals 40 691 696 10.1016/j.chaos.2007.08.015 1197.37043
-
(2009)
Chaos Solitons Fractals
, vol.40
, pp. 691-696
-
-
Sun, Y.1
-
23
-
-
33846299223
-
On the boundedness of solutions of the Chen system
-
10.1016/j.jmaa.2006.06.091 1108.37030 2306814
-
W. Qin G. Chen 2007 On the boundedness of solutions of the Chen system J. Math. Anal. Appl. 329 445 451 10.1016/j.jmaa.2006.06.091 1108.37030 2306814
-
(2007)
J. Math. Anal. Appl.
, vol.329
, pp. 445-451
-
-
Qin, W.1
Chen, G.2
-
24
-
-
39149106421
-
On the study of globally exponentially attractive set of a general chaotic system
-
2398685
-
P. Yu X. Liao 2008 On the study of globally exponentially attractive set of a general chaotic system Commun. Nonlinear Sci. Numer. Simul. 13 1498 1507 2398685
-
(2008)
Commun. Nonlinear Sci. Numer. Simul.
, vol.13
, pp. 1498-1507
-
-
Yu, P.1
Liao, X.2
-
25
-
-
33845542059
-
Study on the global property of the smooth Chua's system
-
DOI 10.1142/S0218127406016483
-
X. Liao P. Yu 2006 Study on the global property of the smooth Chua's system Int. J. Bifurcat. Chaos 16 2815 2841 10.1142/S0218127406016483 1185.37056 2282905 (Pubitemid 44924963)
-
(2006)
International Journal of Bifurcation and Chaos
, vol.16
, Issue.10
, pp. 2815-2841
-
-
Liao, X.1
Yu, P.2
Xie, S.3
Fu, Y.4
-
26
-
-
62949192764
-
Estimating the ultimate bound and positively invariant set for the hyperchaotic Lorenz-Haken system
-
10.1016/j.chaos.2007.06.038 1197.37034 2512933
-
D. Li J. Lu X. Wu 2009 Estimating the ultimate bound and positively invariant set for the hyperchaotic Lorenz-Haken system Chaos Solitons Fractals 39 1290 1296 10.1016/j.chaos.2007.06.038 1197.37034 2512933
-
(2009)
Chaos Solitons Fractals
, vol.39
, pp. 1290-1296
-
-
Li, D.1
Lu, J.2
Wu, X.3
-
27
-
-
77949491885
-
Bounds of the hyper-chaotic Lorenz-Stenflo system
-
10.1016/j.cnsns.2009.09.015 1222.37036 2602736
-
P. Wang D. Li Q. Hu 2010 Bounds of the hyper-chaotic Lorenz-Stenflo system Commun. Nonlinear Sci. Numer. Simul. 15 2514 2520 10.1016/j.cnsns.2009. 09.015 1222.37036 2602736
-
(2010)
Commun. Nonlinear Sci. Numer. Simul.
, vol.15
, pp. 2514-2520
-
-
Wang, P.1
Li, D.2
Hu, Q.3
-
28
-
-
67349164294
-
Bounding a domain containing all compact invariant sets of the permanent-magnet motor system
-
10.1016/j.cnsns.2008.09.001 1221.34120 2522891
-
L.N. Coria K.E. Starkov 2009 Bounding a domain containing all compact invariant sets of the permanent-magnet motor system Commun. Nonlinear Sci. Numer. Simul. 14 3879 3888 10.1016/j.cnsns.2008.09.001 1221.34120 2522891
-
(2009)
Commun. Nonlinear Sci. Numer. Simul.
, vol.14
, pp. 3879-3888
-
-
Coria, L.N.1
Starkov, K.E.2
-
29
-
-
63649090922
-
Bounds for a domain containing all compact invariant sets of the system describing the laser-plasma interaction
-
10.1016/j.chaos.2007.06.078 1197.34069 2514568
-
K.E. Starkov 2009 Bounds for a domain containing all compact invariant sets of the system describing the laser-plasma interaction Chaos Solitons Fractals 39 1671 1676 10.1016/j.chaos.2007.06.078 1197.34069 2514568
-
(2009)
Chaos Solitons Fractals
, vol.39
, pp. 1671-1676
-
-
Starkov, K.E.1
-
30
-
-
70449525323
-
Localization analysis of compact invariant sets of multi-dimensional nonlinear systems and symmetrical prolongations
-
10.1016/j.cnsns.2009.05.068 2563915
-
A.P. Krishchenko K.E. Starkov 2010 Localization analysis of compact invariant sets of multi-dimensional nonlinear systems and symmetrical prolongations Commun. Nonlinear Sci. Numer. Simul. 5 1159 1165 10.1016/j.cnsns.2009.05.068 2563915
-
(2010)
Commun. Nonlinear Sci. Numer. Simul.
, vol.5
, pp. 1159-1165
-
-
Krishchenko, A.P.1
Starkov, K.E.2
-
31
-
-
34347377164
-
Estimation of the domain containing all compact invariant sets of a system modelling the amplitude of a plasma instability
-
10.1016/j.physleta.2007.02.088
-
A.P. Krishchenko K.E. Starkov 2007 Estimation of the domain containing all compact invariant sets of a system modelling the amplitude of a plasma instability Phys. Lett. A 367 65 72 10.1016/j.physleta.2007.02.088
-
(2007)
Phys. Lett. A
, vol.367
, pp. 65-72
-
-
Krishchenko, A.P.1
Starkov, K.E.2
-
32
-
-
58349105559
-
Bounds for compact invariant sets of the system describing dynamics of the nuclear spin generator
-
10.1016/j.cnsns.2008.08.005 1221.34091 2483869
-
K.E. Starkov 2009 Bounds for compact invariant sets of the system describing dynamics of the nuclear spin generator Commun. Nonlinear Sci. Numer. Simul. 14 2565 2570 10.1016/j.cnsns.2008.08.005 1221.34091 2483869
-
(2009)
Commun. Nonlinear Sci. Numer. Simul.
, vol.14
, pp. 2565-2570
-
-
Starkov, K.E.1
-
34
-
-
77957344292
-
Bounds for a new chaotic system and its application in chaos synchronization
-
10.1016/j.cnsns.2010.05.032 1221.34122 2736826
-
F.C. Zhang Y.L. Shu H.L. Yang 2011 Bounds for a new chaotic system and its application in chaos synchronization Commun. Nonlinear Sci. Numer. Simul. 16 1501 1508 10.1016/j.cnsns.2010.05.032 1221.34122 2736826
-
(2011)
Commun. Nonlinear Sci. Numer. Simul.
, vol.16
, pp. 1501-1508
-
-
Zhang, F.C.1
Shu, Y.L.2
Yang, H.L.3
-
35
-
-
84855817764
-
Studies on derivative Lorenz chaotic system
-
(in Chinese)
-
H. Chen X. Yang D. Huang 2009 Studies on derivative Lorenz chaotic system J. Jilin Univ. Sci. 47 566 571 (in Chinese)
-
(2009)
J. Jilin Univ. Sci.
, vol.47
, pp. 566-571
-
-
Chen, H.1
Yang, X.2
Huang, D.3
-
37
-
-
77955776243
-
Dynamics of a new Lorenz-like chaotic system
-
10.1016/j.nonrwa.2009.09.001 1202.34083 2661923
-
Y. Liu Q. Yang 2010 Dynamics of a new Lorenz-like chaotic system Nonlinear Anal.; Real World Appl. 11 2563 2572 10.1016/j.nonrwa.2009.09.001 1202.34083 2661923
-
(2010)
Nonlinear Anal.; Real World Appl.
, vol.11
, pp. 2563-2572
-
-
Liu, Y.1
Yang, Q.2
-
38
-
-
70350707952
-
Hopf bifurcation analysis in the T system
-
10.1016/j.nonrwa.2009.01.007 1195.34057 2570571
-
B. Jiang X. Han Q. Bi 2010 Hopf bifurcation analysis in the T system Nonlinear Anal.; Real World Appl. 11 522 527 10.1016/j.nonrwa.2009.01.007 1195.34057 2570571
-
(2010)
Nonlinear Anal.; Real World Appl.
, vol.11
, pp. 522-527
-
-
Jiang, B.1
Han, X.2
Bi, Q.3
-
39
-
-
38649114696
-
Analysis of a 3D chaotic system
-
DOI 10.1016/j.chaos.2006.07.052, PII S0960077906007958
-
D. Opris 2008 Analysis of a 3D chaotic system Chaos Solitons Fractals 36 1315 1319 10.1016/j.chaos.2006.07.052 1148.37027 2388973 (Pubitemid 351172780)
-
(2008)
Chaos, Solitons and Fractals
, vol.36
, Issue.5
, pp. 1315-1319
-
-
Tigan, G.1
Opris, D.2
-
40
-
-
67649882006
-
Heteroclinic orbits in the T and the Lü systems
-
10.1016/j.chaos.2008.10.024 1198.37029 2543014
-
G. Tigan D. Constantinescu 2009 Heteroclinic orbits in the T and the Lü systems Chaos Solitons Fractals 42 20 23 10.1016/j.chaos.2008.10.024 1198.37029 2543014
-
(2009)
Chaos Solitons Fractals
, vol.42
, pp. 20-23
-
-
Tigan, G.1
Constantinescu, D.2
-
41
-
-
67649378978
-
Nonlinear dynamics and circuit implementation for a new Lorenz-like attractor
-
10.1016/j.chaos.2008.09.011 1198.37048
-
X. Li Y. Chu J. Zhang Y. Chang 2009 Nonlinear dynamics and circuit implementation for a new Lorenz-like attractor Chaos Solitons Fractals 41 2360 2370 10.1016/j.chaos.2008.09.011 1198.37048
-
(2009)
Chaos Solitons Fractals
, vol.41
, pp. 2360-2370
-
-
Li, X.1
Chu, Y.2
Zhang, J.3
Chang, Y.4
-
42
-
-
0032131669
-
Lie Derivatives and Dynamical Systems
-
PII S096007799800068X
-
L. Kocarev U. Parlitz B. Hu 1998 Lie derivatives and dynamical systems Chaos Solitons Fractals 9 1359 1366 10.1016/S0960-0779(98)00068-X 0974.37022 1653157 (Pubitemid 128435199)
-
(1998)
Chaos, Solitons and Fractals
, vol.9
, Issue.8
, pp. 1359-1366
-
-
Kocarev, L.1
Parlitz, U.2
Hu, B.3
|