메뉴 건너뛰기




Volumn 15, Issue 3, 2014, Pages 457-469

Identifying clusters in Bayesian disease mapping

Author keywords

Clustering; Conditional autoregressive model; Disease mapping

Indexed keywords

BAYES THEOREM; EPIDEMIOLOGY; HUMAN; RESPIRATION DISORDERS; SPATIAL ANALYSIS; STATISTICAL MODEL; UNITED KINGDOM;

EID: 84902649938     PISSN: 14654644     EISSN: 14684357     Source Type: Journal    
DOI: 10.1093/biostatistics/kxu005     Document Type: Article
Times cited : (58)

References (22)
  • 1
    • 60849108333 scopus 로고    scopus 로고
    • Finite mixture models for mapping spatially dependent disease counts
    • ALFO, M.,NIEDDU, L. AND VICARI, D. (2009). Finite mixture models for mapping spatially dependent disease counts. Biometrical Journal 51, 84-97.
    • (2009) Biometrical Journal , vol.51 , pp. 84-97
    • Alfo, M.1    Nieddu, L.2    Vicari, D.3
  • 2
    • 84867508252 scopus 로고    scopus 로고
    • AUDIT SCOTLAND Health inequalities in Scotland The Scottish Government
    • AUDIT SCOTLAND. (2012). Health inequalities in Scotland. Technical Report. The Scottish Government.
    • (2012) Technical Report
  • 4
    • 84902661520 scopus 로고    scopus 로고
    • National cardiovascular disease surveillance system
    • CENTERS FOR DISEASE CONTROL AND PREVENTION
    • CENTERS FOR DISEASE CONTROL AND PREVENTION. (2011). National Cardiovascular Disease Surveillance System. Technical Report, http://www.cdc.gov/dhdsp/ncvdss/.
    • (2011) Technical Report
  • 5
    • 84858032733 scopus 로고    scopus 로고
    • Classification method for disease risk mapping based on discrete hidden Markov random fields
    • CHARRAS-GARRIDO, M., ABRIAL, D. AND DE GOER J. (2012). Classification method for disease risk mapping based on discrete hidden Markov random fields. Biostatistics 13, 241-255.
    • (2012) Biostatistics , vol.13 , pp. 241-255
    • Charras-Garrido, M.1    Abrial, D.2    De Goer, J.3
  • 7
    • 22344438843 scopus 로고    scopus 로고
    • Point process methodology for on-line spatio-temporal disease surveillance
    • DIGGLE, P., ROWLINGSON, B. AND SU, T. (2005). Point process methodology for on-line spatio-temporal disease surveillance. Environmetrics 16, 423-434.
    • (2005) Environmetrics , vol.16 , pp. 423-434
    • Diggle, P.1    Rowlingson, B.2    Su, T.3
  • 9
    • 36849029089 scopus 로고    scopus 로고
    • Bayesian regularization for normal mixture estimation and model-based clustering
    • FRALEY, C. AND RAFTERY, A. (2007). Bayesian regularization for normal mixture estimation and model-based clustering. Journal of Classification 24, 155-181.
    • (2007) Journal of Classification , vol.24 , pp. 155-181
    • Fraley, C.1    Raftery, A.2
  • 12
    • 1642602502 scopus 로고    scopus 로고
    • Bayesian detection of clusters and discontinuities in disease maps
    • KNORR-HELD, L. AND RASSER, G. (2000). Bayesian detection of clusters and discontinuities in disease maps. Biometrics 56, 13-21.
    • (2000) Biometrics , vol.56 , pp. 13-21
    • Knorr-Held, L.1    Rasser, G.2
  • 14
    • 84863587190 scopus 로고    scopus 로고
    • Boundary detection in disease mapping studies
    • LEE, D. AND MITCHELL, R. (2012). Boundary detection in disease mapping studies. Biostatistics 13, 415-426.
    • (2012) Biostatistics , vol.13 , pp. 415-426
    • Lee, D.1    Mitchell, R.2
  • 15
    • 0002206208 scopus 로고    scopus 로고
    • Estimation of disease rates in small areas: A newmixed model for spatial dependence
    • Halloran, M. and Berry, D. (editors) New York: Springer
    • LEROUX, B.,LEI, X. AND BRESLOW, N. (1999). Estimation of disease rates in small areas: a newmixed model for spatial dependence. In: Halloran, M. and Berry, D. (editors), Chapter Statistical Models in Epidemiology, the Environment and Clinical Trials. New York: Springer, pp. 135-178.
    • (1999) Chapter Statistical Models in Epidemiology, the Environment and Clinical Trials , pp. 135-178
    • Leroux, B.1    Lei, X.2    Breslow, N.3
  • 17
    • 0003610524 scopus 로고    scopus 로고
    • PUBLIC HEALTH ENGLAND Cancer e-Atlas
    • PUBLIC HEALTH ENGLAND. (2010). Cancer e-Atlas. Technical Report, http://www.ncin.org.uk/cancer information tools/eatlas/.
    • (2010) Technical Report
  • 18
    • 84950632109 scopus 로고
    • Objective criteria for the evaluation of clustering methods
    • RAND, W. (1971). Objective criteria for the evaluation of clustering methods. Journal of the American Statistical Association 66, 846-850.
    • (1971) Journal of the American Statistical Association , vol.66 , pp. 846-850
    • Rand, W.1
  • 19
    • 62849120031 scopus 로고    scopus 로고
    • Approximate Bayesian inference for latent Gaussian models using integrated nested Laplace approximations (with discussion)
    • RUE, H., MARTINO, S. AND CHOPIN, N. (2009). Approximate Bayesian inference for latent Gaussian models using integrated nested Laplace approximations (with discussion). Journal of the Royal Statistical Society, Series B 71, 319-392.
    • (2009) Journal of the Royal Statistical Society, Series B , vol.71 , pp. 319-392
    • Rue, H.1    Martino, S.2    Chopin, N.3
  • 20
    • 79952214675 scopus 로고    scopus 로고
    • Using integrated nested Laplace approximations for the evaluation of veterinary surveillance data from Switzerland: A case study
    • SCHRÖDLE, B., HELD, L., RIEBLER, R. AND DANUSER, J. (2011). Using integrated nested Laplace approximations for the evaluation of veterinary surveillance data from Switzerland: a case study. Journal of the Royal Statistical Society Series C 60, 261-279.
    • (2011) Journal of the Royal Statistical Society Series C , vol.60 , pp. 261-279
    • Schrödle, B.1    Held, L.2    Riebler, R.3    Danuser, J.4
  • 22
    • 84888329180 scopus 로고    scopus 로고
    • A Bayesian model for cluster detection
    • WAKEFIELD, J. AND KIM, A. (2013). A Bayesian model for cluster detection. Biostatistics 14, 752-765.
    • (2013) Biostatistics , vol.14 , pp. 752-765
    • Wakefield, J.1    Kim, A.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.