메뉴 건너뛰기




Volumn 51, Issue 1, 2009, Pages 84-97

Finite mixture models for mapping spatially dependent disease counts

Author keywords

Field Approximation; Finite Mixtures; Gibbs distribution; Multivariate Counts

Indexed keywords

GEOGRAPHICAL REGIONS;

EID: 60849108333     PISSN: 03233847     EISSN: 15214036     Source Type: Journal    
DOI: 10.1002/bimj.200810494     Document Type: Article
Times cited : (21)

References (37)
  • 1
    • 85163270171 scopus 로고    scopus 로고
    • Alfó. M., Nieddu. L.. and Vieari. D. (2008). A finite mixture model for image segmentation. Statistics and Computing, 18. 137-150.
    • Alfó. M., Nieddu. L.. and Vieari. D. (2008). A finite mixture model for image segmentation. Statistics and Computing, 18. 137-150.
  • 2
    • 33745613296 scopus 로고    scopus 로고
    • Semiparametric mixture models for multivariate count data, with application
    • Alfó, M. and Trovato. G. (2004). Semiparametric mixture models for multivariate count data, with application. Econometrics Journal 7, 1 -29.
    • (2004) Econometrics Journal , vol.7 , pp. 1-29
    • Alfó, M.1    Trovato, G.2
  • 4
    • 85163268708 scopus 로고    scopus 로고
    • Besag. J.. York. J.. and Mollié, A. (1991). Bayesian image restoration, with two applications in spatial statistics (with discussion). Annals of the Institute of Statistical Mathematics 43, 1-59.
    • Besag. J.. York. J.. and Mollié, A. (1991). Bayesian image restoration, with two applications in spatial statistics (with discussion). Annals of the Institute of Statistical Mathematics 43, 1-59.
  • 6
    • 0347093592 scopus 로고    scopus 로고
    • The EM algorithm with gradient function update for discrete mixtures with known (fixed) number of components
    • Böhning, D. (2003). The EM algorithm with gradient function update for discrete mixtures with known (fixed) number of components. Statistics and Computing 13. 257-265.
    • (2003) Statistics and Computing , vol.13 , pp. 257-265
    • Böhning, D.1
  • 7
    • 0034665665 scopus 로고    scopus 로고
    • Space-time mixture modelling ofpublic health data
    • Böhning, D., Dietz, E., and Schlattmann. P. (2000). Space-time mixture modelling ofpublic health data. Statistics in Medicine 19. 2333-2344.
    • (2000) Statistics in Medicine , vol.19 , pp. 2333-2344
    • Böhning, D.1    Dietz, E.2    Schlattmann, P.3
  • 8
    • 85163271511 scopus 로고    scopus 로고
    • Böhning. D.. Schlattmann. P., and Lindsay. B. (1992). Computer assisted analysis ofmixtures (c.a.man): Statistical algorithms. Biometrics 48. 283-303.
    • Böhning. D.. Schlattmann. P., and Lindsay. B. (1992). Computer assisted analysis ofmixtures (c.a.man): Statistical algorithms. Biometrics 48. 283-303.
  • 9
    • 0001608056 scopus 로고    scopus 로고
    • An r-squared measure of goodness of fit for some common nonlinear regression models
    • Cameron, A. C. and Windmeijer. F. A. G. (1997). An r-squared measure of goodness of fit for some common nonlinear regression models. Journal of Econometrics 77. 329-342.
    • (1997) Journal of Econometrics , vol.77 , pp. 329-342
    • Cameron, A.C.1    Windmeijer, F.A.G.2
  • 10
    • 0037209490 scopus 로고    scopus 로고
    • EM procedures using mean field-like approximation for Markov model-based image segmentation
    • Celeux, G., Forbes. F., and Peyrard. N. (2003). EM procedures using mean field-like approximation for Markov model-based image segmentation. Pattern Recognition 36. 131-144.
    • (2003) Pattern Recognition , vol.36 , pp. 131-144
    • Celeux, G.1    Forbes, F.2    Peyrard, N.3
  • 11
    • 85163270040 scopus 로고    scopus 로고
    • Dean. C. B., Ugarte. M. D.. and Militino. A. F. (2001). Detecting interaction between random region and fixed age effects in disease mapping. Biometrics 57. 197-202.
    • Dean. C. B., Ugarte. M. D.. and Militino. A. F. (2001). Detecting interaction between random region and fixed age effects in disease mapping. Biometrics 57. 197-202.
  • 12
    • 0027082307 scopus 로고
    • An approximate bivariate Bayesian method for analyzing small frequencies
    • DeSouza. C.M. (1992). An approximate bivariate Bayesian method for analyzing small frequencies. Biometrics 48.1113-1130.
    • (1992) Biometrics , vol.48 , pp. 1113-1130
    • DeSouza, C.M.1
  • 13
    • 85163267400 scopus 로고    scopus 로고
    • van Duijn. M. A. J., Gile, K.. and Handcock. M. S. (2007). Comparison of Maximum Pseudo Likelihood and Maximum Likelihood Estimation of Exponential Family Random Graph Models. Working Paper, Center for Statistics and the Social Sciences University of Washington. 74.
    • van Duijn. M. A. J., Gile, K.. and Handcock. M. S. (2007). Comparison of Maximum Pseudo Likelihood and Maximum Likelihood Estimation of Exponential Family Random Graph Models. Working Paper, Center for Statistics and the Social Sciences University of Washington. 74.
  • 14
    • 0000452356 scopus 로고    scopus 로고
    • Using bootstrap likelihood ratios in finite mixture models
    • Feng. Z. and McCulloch, C. (1996). Using bootstrap likelihood ratios in finite mixture models. Journal of Royal Statistical Society B 58, 609-617.
    • (1996) Journal of Royal Statistical Society B , vol.58 , pp. 609-617
    • Feng, Z.1    McCulloch, C.2
  • 15
    • 0141613707 scopus 로고    scopus 로고
    • Hidden Markov random field model selection criteria based on mean field-like approximations
    • Forbes. F. and Peyrard. N. (2003) Hidden Markov random field model selection criteria based on mean field-like approximations. IEEE Transactions on Pattern Analysis and Machine Intelligence 25. 1089-1101.
    • (2003) IEEE Transactions on Pattern Analysis and Machine Intelligence , vol.25 , pp. 1089-1101
    • Forbes, F.1    Peyrard, N.2
  • 16
    • 0000736067 scopus 로고    scopus 로고
    • Simulating Normalizing Constants: From Importance Sampling to Bridge Sampling to Path Sampling
    • Gelman. A. and Meng. X.-L. (1999). Simulating Normalizing Constants: From Importance Sampling to Bridge Sampling to Path Sampling. Statistical Science 13, 163-185.
    • (1999) Statistical Science , vol.13 , pp. 163-185
    • Gelman, A.1    Meng, X.-L.2
  • 18
    • 3042690550 scopus 로고    scopus 로고
    • Atlante Italiano delle Malattie Cardiovascolari. I edizione
    • Giampaoli. S. and Vanuzzo. D. (2003). Atlante Italiano delle Malattie Cardiovascolari. I edizione. Indian Heart Journal 4, 1S-12IS.
    • (2003) Indian Heart Journal , vol.4
    • Giampaoli, S.1    Vanuzzo, D.2
  • 19
    • 85163274073 scopus 로고    scopus 로고
    • Gilks. W. R.. Richardson, S., and Spiegelhalter. D. J. (eds.). (1996). Markov chain Monte Carlo inpractice. Chapman & Hall: London.
    • Gilks. W. R.. Richardson, S., and Spiegelhalter. D. J. (eds.). (1996). Markov chain Monte Carlo inpractice. Chapman & Hall: London.
  • 23
    • 85163271014 scopus 로고    scopus 로고
    • Generalized hierarchical multivariate CAR models for areal data
    • Jin, X. Carlin, B. P., and Banerjec S. (2005). Generalized hierarchical multivariate CAR models for areal data. Statistics in Medicine 17. 2045-2060.
    • (2005) Statistics in Medicine , vol.17 , pp. 2045-2060
    • Jin, X.1    Carlin, B.P.2    Banerjec, S.3
  • 24
    • 33846360024 scopus 로고    scopus 로고
    • Finite mixtures of multivariate Poisson distributions with application
    • Karlis. D. and Meligkotsidou, L. (2007). Finite mixtures of multivariate Poisson distributions with application. Journal of Statistical Planning and Inference 137, 1942-1960.
    • (2007) Journal of Statistical Planning and Inference , vol.137 , pp. 1942-1960
    • Karlis, D.1    Meligkotsidou, L.2
  • 26
    • 0035649641 scopus 로고    scopus 로고
    • A shared component model for detecting joint and selective clustering of two diseases
    • Knorr-Held. L. and Best. N. G. (2001). A shared component model for detecting joint and selective clustering of two diseases. Journal of the Royal Statistical Society, A 164, 73-85.
    • (2001) Journal of the Royal Statistical Society, A , vol.164 , pp. 73-85
    • Knorr-Held, L.1    Best, N.G.2
  • 27
    • 85163268692 scopus 로고    scopus 로고
    • Langford, I.. Leyland. A. H.. Rasbash, J., and Goldstein. H. (2000). Multilevel modeling of the geographical distribution of disease. Journal of the Royal Statistical Society. C 48, 253-268.
    • Langford, I.. Leyland. A. H.. Rasbash, J., and Goldstein. H. (2000). Multilevel modeling of the geographical distribution of disease. Journal of the Royal Statistical Society. C 48, 253-268.
  • 28
    • 85163268577 scopus 로고    scopus 로고
    • Lawson. A. B., Biggeri, A. B.. Böhning. D., Lesaffre, E.. Viel. J-F., Clark, A.. Schlattmann. P.. and Divino. F. (2000) Disease mapping models: an empirical evaluation. Statistics in Medicine 19. 2217-2241.
    • Lawson. A. B., Biggeri, A. B.. Böhning. D., Lesaffre, E.. Viel. J-F., Clark, A.. Schlattmann. P.. and Divino. F. (2000) Disease mapping models: an empirical evaluation. Statistics in Medicine 19. 2217-2241.
  • 30
    • 85163267923 scopus 로고    scopus 로고
    • Leyland. A. H., Langford. I.. Rasbash, J., and Goldstein, H. (2000). Multivariate spatial models for event data. Statistics in Medicine 19, 2469-2478.
    • Leyland. A. H., Langford. I.. Rasbash, J., and Goldstein, H. (2000). Multivariate spatial models for event data. Statistics in Medicine 19, 2469-2478.
  • 31
    • 0028873767 scopus 로고
    • Estimating the degree of heterogeneity between event rates using likelihood
    • Martuzzi. M. and Hills. M. (1995). Estimating the degree of heterogeneity between event rates using likelihood. American Journal of Epidemiology 141, 369-374.
    • (1995) American Journal of Epidemiology , vol.141 , pp. 369-374
    • Martuzzi, M.1    Hills, M.2
  • 33
    • 85163274540 scopus 로고    scopus 로고
    • Militino. A. F.. Ugarte. M. D.. and Dean. C. B. (2001). The use of mixture models for identifying high risks in disease mapping. Statistics in Medicine 20. 203 5-2049.
    • Militino. A. F.. Ugarte. M. D.. and Dean. C. B. (2001). The use of mixture models for identifying high risks in disease mapping. Statistics in Medicine 20. 203 5-2049.
  • 34
    • 0001455988 scopus 로고    scopus 로고
    • Bayesian mapping of disease
    • Gilks, W, Richardson, S, and Spiegelhalter. D, eds, Chapman & Hall, London
    • Molliè, A. (1996). Bayesian mapping of disease. In Gilks, W., Richardson, S., and Spiegelhalter. D. (eds), Markov Chain Monte Carlo in Practice. Chapman & Hall, London.
    • (1996) Markov Chain Monte Carlo in Practice
    • Molliè, A.1
  • 35
    • 85163270956 scopus 로고    scopus 로고
    • Richardson. S.. Abellan. J. J.. and Best, N. (2006). Bayesian spatio-temporal analysis of joint patterns of male and female lung cancer risks in Yorkshire (UK). Statistical Methods in Medical Research 15. 385-407.
    • Richardson. S.. Abellan. J. J.. and Best, N. (2006). Bayesian spatio-temporal analysis of joint patterns of male and female lung cancer risks in Yorkshire (UK). Statistical Methods in Medical Research 15. 385-407.


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.