메뉴 건너뛰기




Volumn 5, Issue , 2014, Pages 429-454

Electrochemical energy engineering: A new frontier of chemical engineering innovation

Author keywords

Chemical engineering; Electrochemical engineering; Energy engineering; Fuel cells; Redox flow batteries; Solar hydrogen generators

Indexed keywords

CHEMICAL ENGINEERING; FUEL CELLS; GAS GENERATORS; INNOVATION; SECONDARY BATTERIES; ELECTROCHEMISTRY; ENERGY CONVERSION; ENGINEERING RESEARCH; FLOW BATTERIES; SOLAR POWER GENERATION;

EID: 84902482436     PISSN: 19475438     EISSN: None     Source Type: Journal    
DOI: 10.1146/annurev-chembioeng-060713-040114     Document Type: Review
Times cited : (69)

References (103)
  • 2
    • 0000408919 scopus 로고
    • Coherent ion-exchange gels and membrane
    • Juda W, McRaeWA. 1950. Coherent ion-exchange gels and membranes. J. Am. Chem. Soc. 72:1043-44
    • (1950) J. Am. Chem. Soc. , vol.72 , pp. 1043-1044
    • Juda, W.1    McRae, W.A.2
  • 3
    • 2442560684 scopus 로고
    • US Patent No. 2 913 511
    • Grubb WT. 1959. Fuel cell. US Patent No. 2,913,511
    • (1959) Fuel Cell
    • Grubb, W.T.1
  • 4
    • 0026696529 scopus 로고
    • Thin-film catalyst layers for polymer electrolyte fuel-cell electrodes
    • Wilson MS, Gottesfeld S. 1992. Thin-film catalyst layers for polymer electrolyte fuel-cell electrodes. J. Appl. Electrochem. 22:1-7
    • (1992) J. Appl. Electrochem. , vol.22 , pp. 1-7
    • Wilson, M.S.1    Gottesfeld, S.2
  • 5
    • 35748941340 scopus 로고    scopus 로고
    • Scientific aspects of polymer electrolyte fuel cell durability and degradation
    • Borup R,Meyers J, Pivovar B, Kim YS, Mukundan R, et al. 2007. Scientific aspects of polymer electrolyte fuel cell durability and degradation. Chem. Rev. 107:3904-51
    • (2007) Chem. Rev. , vol.107 , pp. 3904-3951
    • Borup Rmeyers, J.1    Pivovar, B.2    Kim, Y.S.3    Mukundan, R.4
  • 6
    • 33748435774 scopus 로고    scopus 로고
    • A class of non-precious metal composite catalysts for fuel cells
    • Bashyam R, Zelenay P. 2006. A class of non-precious metal composite catalysts for fuel cells. Nature 443:63-66
    • (2006) Nature , vol.443 , pp. 63-66
    • Bashyam, R.1    Zelenay, P.2
  • 7
    • 79955405239 scopus 로고    scopus 로고
    • High-performance electrocatalysts for oxygen reduction derived from polyaniline, iron, and cobalt
    • Wu G, More KL, Johnston CM, Zelenay P. 2011. High-performance electrocatalysts for oxygen reduction derived from polyaniline, iron, and cobalt. Science 332:443-47
    • (2011) Science , vol.332 , pp. 443-447
    • Wu, G.1    More, K.L.2    Johnston, C.M.3    Zelenay, P.4
  • 8
    • 0000176241 scopus 로고
    • The DSK system of fuel cell electrodes
    • Justi EW, Winsel AW. 1961. The DSK system of fuel cell electrodes. J. Electrochem. Soc. 108:1073-79
    • (1961) J. Electrochem. Soc. , vol.108 , pp. 1073-1079
    • Justi, E.W.1    Winsel, A.W.2
  • 9
    • 0035888337 scopus 로고    scopus 로고
    • Characterization and use of anionic membranes for alkaline fuel cells
    • Agel E, Bouet J, Fauvarque JF. 2001. Characterization and use of anionic membranes for alkaline fuel cells. J. Power Sources 101:267-74
    • (2001) J. Power Sources , vol.101 , pp. 267-274
    • Agel, E.1    Bouet, J.2    Fauvarque, J.F.3
  • 10
    • 18444373261 scopus 로고    scopus 로고
    • Prospects for alkaline anion-exchange membranes in low temperature fuel cells
    • Varcoe JR, Slade RCT. 2005. Prospects for alkaline anion-exchange membranes in low temperature fuel cells. Fuel Cells 5:187-200
    • (2005) Fuel Cells , vol.5 , pp. 187-200
    • Varcoe, J.R.1    Slade, R.C.T.2
  • 11
    • 58549084170 scopus 로고    scopus 로고
    • Alkaline polymer electrolyte fuel cells completely free from noble metal catalysts
    • Lu SF, Pan J, Huang AB, Zhuang L, Lu JT. 2008. Alkaline polymer electrolyte fuel cells completely free from noble metal catalysts. Proc. Natl. Acad. Sci. USA 105:20611-14
    • (2008) Proc. Natl. Acad. Sci. USA , vol.105 , pp. 20611-20614
    • Lu, S.F.1    Pan, J.2    Huang, A.B.3    Zhuang, L.4    Lu, J.T.5
  • 12
    • 84870477131 scopus 로고    scopus 로고
    • An efficient Ag-ionomer interface for hydroxide exchange membrane fuel cells
    • Gu S, Sheng WC, Cai R, Alia SM, Song SQ, et al. 2013. An efficient Ag-ionomer interface for hydroxide exchange membrane fuel cells. Chem. Commun. 49:131-33
    • (2013) Chem. Commun. , vol.49 , pp. 131-133
    • Gu, S.1    Sheng, W.C.2    Cai, R.3    Alia, S.M.4    Song, S.Q.5
  • 13
    • 33751259961 scopus 로고    scopus 로고
    • Steady-state dc and impedance investigations of H2/O2 alkaline membrane fuel cells with commercial Pt/C, Ag/C, and Au/C catshodes
    • Varcoe JR, Slade RCT, Wright GL, Chen YL. 2006. Steady-state dc and impedance investigations of H2/O2 alkaline membrane fuel cells with commercial Pt/C, Ag/C, and Au/C cathodes. J. Phys. Chem. B 110:21041-49
    • (2006) J. Phys. Chem. B , vol.110 , pp. 21041-21049
    • Varcoe, J.R.1    Slade, R.C.T.2    Wright, G.L.3    Chen, Y.L.4
  • 16
    • 84856729361 scopus 로고    scopus 로고
    • Direct oxidation alkaline fuel cells: From materials to systems
    • Yu EH,Wang X, Krewer U, Li L, Scott K. 2012. Direct oxidation alkaline fuel cells: from materials to systems. Energy Environ. Sci. 5:5668-80
    • (2012) Energy Environ. Sci. , vol.5 , pp. 5668-5680
    • Yu, E.H.1    Wang, X.2    Krewer, U.3    Li, L.4    Scott, K.5
  • 17
    • 0036954379 scopus 로고    scopus 로고
    • Preliminary study on direct alcohol fuel cells employing anion exchange membrane
    • Ogumi Z,Matsuoka K, Chiba S, MatsuokaM, Iriyama Y, et al. 2002. Preliminary study on direct alcohol fuel cells employing anion exchange membrane. Electrochemistry 70:980-83
    • (2002) Electrochemistry , vol.70 , pp. 980-983
    • Ogumi, Z.1    Matsuoka, K.2    Chiba, S.3    Matsuoka, M.4    Iriyama, Y.5
  • 20
    • 0141997698 scopus 로고    scopus 로고
    • Potential application of anionexchange membrane for hydrazine fuel cell electrolyte
    • Yamada K, Yasuda K, Fujiwara N, Siroma Z, Tanaka H, et al. 2003. Potential application of anionexchange membrane for hydrazine fuel cell electrolyte. Electrochem. Commun. 5:892-96
    • (2003) Electrochem. Commun. , vol.5 , pp. 892-896
    • Yamada, K.1    Yasuda, K.2    Fujiwara, N.3    Siroma, Z.4    Tanaka, H.5
  • 21
    • 77953588746 scopus 로고    scopus 로고
    • Direct ammonia alkaline anion-exchange membrane fuel cells
    • Lan R, Tao SW. 2010. Direct ammonia alkaline anion-exchange membrane fuel cells. Electrochem. Solid-St. Lett. 13:B83-B86
    • (2010) Electrochem. Solid-St. Lett. , vol.13
    • Lan, R.1    Tao, S.W.2
  • 24
    • 52749090013 scopus 로고    scopus 로고
    • A carbon dioxide tolerant aqueouselectrolyte-free anion-exchange membrane alkaline fuel cell
    • Adams LA, Poynton SD, Tamain C, Slade RCT, Varcoe JR. 2008. A carbon dioxide tolerant aqueouselectrolyte-free anion-exchange membrane alkaline fuel cell. Chem Sus Chem 1:79-81
    • (2008) Chem Sus Chem , vol.1 , pp. 79-81
    • Adams, L.A.1    Poynton, S.D.2    Tamain, C.3    Slade, R.C.T.4    Varcoe, J.R.5
  • 25
    • 78649916685 scopus 로고    scopus 로고
    • In-situ observation of CO2 through the self-purging in alkaline membrane fuel cell (AMFC)
    • Fukuta K, Inoue H, Watanabe S, Yanagi H. 2009. In-situ observation of CO2 through the self-purging in alkaline membrane fuel cell (AMFC). ECS Trans. 19:23-27
    • (2009) ECS Trans. , vol.19 , pp. 23-27
    • Fukuta, K.1    Inoue, H.2    Watanabe, S.3    Yanagi, H.4
  • 26
    • 84863337666 scopus 로고    scopus 로고
    • Designing advanced alkaline polymer electrolytes for fuel cell applications
    • Pan J, Chen C, Zhuang L, Lu JT. 2012. Designing advanced alkaline polymer electrolytes for fuel cell applications. Acc. Chem. Res. 45:473-81
    • (2012) Acc. Chem. Res. , vol.45 , pp. 473-481
    • Pan, J.1    Chen, C.2    Zhuang, L.3    Lu, J.T.4
  • 27
    • 79958032370 scopus 로고    scopus 로고
    • Anion exchange membranes for alkaline fuel cells: A review
    • Merle G, Wessling M, Nijmeijer K. 2011. Anion exchange membranes for alkaline fuel cells: a review. J. Membr. Sci. 377:1-35
    • (2011) J. Membr. Sci. , vol.377 , pp. 1-35
    • Merle, G.1    Wessling, M.2    Nijmeijer, K.3
  • 28
    • 77950948354 scopus 로고    scopus 로고
    • Alkaline polymer electrolyte fuel cells: Principle, challenges, and recent progress
    • Tang DP, Pan J, Lu SF, Zhuang L, Lu JT. 2010. Alkaline polymer electrolyte fuel cells: principle, challenges, and recent progress. Sci. China Chem. 53:357-64
    • (2010) Sci. China Chem. , vol.53 , pp. 357-364
    • Tang, D.P.1    Pan, J.2    Lu, S.F.3    Zhuang, L.4    Lu, J.T.5
  • 29
    • 77951188052 scopus 로고    scopus 로고
    • Ion-containing polymers: New energy & clean water
    • Hickner MA. 2010. Ion-containing polymers: new energy & clean water. Mater. Today 13:34-41
    • (2010) Mater. Today , vol.13 , pp. 34-41
    • Hickner, M.A.1
  • 30
    • 84861079878 scopus 로고    scopus 로고
    • Recent development of polymer electrolyte membranes for fuel cells
    • ZhangHW, Shen PK. 2012. Recent development of polymer electrolyte membranes for fuel cells. Chem. Rev. 112:2780-832
    • (2012) Chem. Rev. , vol.112 , pp. 2780-2832
    • Zhang, H.W.1    Shen, P.K.2
  • 31
    • 79960556626 scopus 로고    scopus 로고
    • Polymeric materials as anion-exchange membranes for alkaline fuel cells
    • Couture G, Alaaeddine A, Boschet F, Ameduri B. 2011. Polymeric materials as anion-exchange membranes for alkaline fuel cells. Prog. Polym. Sci. 36:1521-57
    • (2011) Prog. Polym. Sci. , vol.36 , pp. 1521-1557
    • Couture, G.1    Alaaeddine, A.2    Boschet, F.3    Ameduri, B.4
  • 32
    • 77956062177 scopus 로고    scopus 로고
    • Synthesis and properties of anion-exchange membranes for fuel cells
    • Shevchenko VV, Gumennaya MA. 2010. Synthesis and properties of anion-exchange membranes for fuel cells. Theor. Exp. Chem. 46:139-52
    • (2010) Theor. Exp. Chem. , vol.46 , pp. 139-152
    • Shevchenko, V.V.1    Gumennaya, M.A.2
  • 33
    • 84863275799 scopus 로고    scopus 로고
    • Advances in the high performance polymer electrolyte membranes for fuel cells
    • Zhang HW, Shen PK. 2012. Advances in the high performance polymer electrolyte membranes for fuel cells. Chem. Soc. Rev. 41:2382-94
    • (2012) Chem. Soc. Rev. , vol.41 , pp. 2382-2394
    • Zhang, H.W.1    Shen, P.K.2
  • 34
    • 77949566695 scopus 로고    scopus 로고
    • Synthetic polymers with quaternary nitrogen atoms-synthesis and structure of the most used type of cationic polyelectrolytes
    • Jaeger W, Bohrisch J, Laschewsky A. 2010. Synthetic polymers with quaternary nitrogen atoms-synthesis and structure of the most used type of cationic polyelectrolytes. Prog. Polym. Sci. 35:511-77
    • (2010) Prog. Polym. Sci. , vol.35 , pp. 511-577
    • Jaeger, W.1    Bohrisch, J.2    Laschewsky, A.3
  • 35
    • 70349932067 scopus 로고    scopus 로고
    • A soluble and highly conductive ionomer for high-performance hydroxide exchange membrane fuel cells
    • Gu S, Cai R, Luo T, Chen ZW, Sun MW, et al. 2009. A soluble and highly conductive ionomer for high-performance hydroxide exchange membrane fuel cells. Angew. Chem. Int. Ed. 48:6499-502
    • (2009) Angew. Chem. Int. Ed. , vol.48 , pp. 6499-6502
    • Gu, S.1    Cai, R.2    Luo, T.3    Chen, Z.W.4    Sun, M.W.5
  • 36
    • 77955745082 scopus 로고    scopus 로고
    • Quaternary phosphonium-based polymers as hydroxide exchange membranes
    • Gu S, Cai R, Luo T, Jensen K, Contreras C, Yan YS. 2010. Quaternary phosphonium-based polymers as hydroxide exchange membranes. Chem Sus Chem 3:555-58
    • (2010) Chem Sus Chem , vol.3 , pp. 555-558
    • Gu, S.1    Cai, R.2    Luo, T.3    Jensen, K.4    Contreras, C.5    Yan, Y.S.6
  • 37
    • 79951884311 scopus 로고    scopus 로고
    • Self-crosslinking for dimensionally stable and solvent-resistant quaternary phosphonium based hydroxide exchange membranes
    • Gu S, Cai R, Yan YS. 2011. Self-crosslinking for dimensionally stable and solvent-resistant quaternary phosphonium based hydroxide exchange membranes. Chem. Commun. 47:2856-58
    • (2011) Chem. Commun. , vol.47 , pp. 2856-2858
    • Gu, S.1    Cai, R.2    Yan, Y.S.3
  • 38
    • 84870009447 scopus 로고    scopus 로고
    • Tertiary sulfonium as a cationic functional group for hydroxide exchange membranes
    • ZhangBZ,GuS,WangJH,Liu Y, Herring AM,Yan YS. 2012. Tertiary sulfonium as a cationic functional group for hydroxide exchange membranes. RSC Adv. 2:12683-85
    • (2012) RSC Adv. , vol.2 , pp. 12683-12685
    • Zhang, B.Z.1    Gu, S.2    Wang, J.H.3    Liu, Y.4    Herring, A.M.5    Yan, Y.S.6
  • 39
    • 77951191215 scopus 로고    scopus 로고
    • Novel hydroxide-conducting polyelectrolyte composed of an poly(arylene ether sulfone) containing pendant quaternary guanidinium groups for alkaline fuel cell applications
    • Wang JH, Li SH, Zhang SB. 2010. Novel hydroxide-conducting polyelectrolyte composed of an poly(arylene ether sulfone) containing pendant quaternary guanidinium groups for alkaline fuel cell applications. Macromolecules 43:3890-96
    • (2010) Macromolecules , vol.43 , pp. 3890-3896
    • Wang, J.H.1    Li, S.H.2    Zhang, S.B.3
  • 40
    • 77955654594 scopus 로고    scopus 로고
    • Synthesis and characterization of novel anion exchange membranes based on imidazolium-type ionic liquid for alkaline fuel cells
    • Guo ML, Fang J, Xu HK, Li W, Lu XH, et al. 2010. Synthesis and characterization of novel anion exchange membranes based on imidazolium-type ionic liquid for alkaline fuel cells. J. Membr. Sci. 362:97-104
    • (2010) J. Membr. Sci. , vol.362 , pp. 97-104
    • Guo, M.L.1    Fang, J.2    Xu, H.K.3    Li, W.4    Lu, X.H.5
  • 42
    • 84861181141 scopus 로고    scopus 로고
    • Engineering the van der Waals interaction in cross-linking-free hydroxide exchange membranes for low swelling and high conductivity
    • Gu S, Skovgard J, Yan YS. 2012. Engineering the van der Waals interaction in cross-linking-free hydroxide exchange membranes for low swelling and high conductivity. Chem Sus Chem 5:843-48
    • (2012) Chem Sus Chem , vol.5 , pp. 843-848
    • Gu, S.1    Skovgard, J.2    Yan, Y.S.3
  • 43
    • 75749106130 scopus 로고    scopus 로고
    • Alkaline direct alcohol fuel cells
    • Antolini E, Gonzalez ER. 2010. Alkaline direct alcohol fuel cells. J. Power Sources 195:3431-50
    • (2010) J. Power Sources , vol.195 , pp. 3431-3450
    • Antolini, E.1    Gonzalez, E.R.2
  • 44
    • 34447344487 scopus 로고    scopus 로고
    • Electrocatalysis of oxygen reduction and small alcohol oxidation in alkaline media
    • Spendelow JS, Wieckowski A. 2007. Electrocatalysis of oxygen reduction and small alcohol oxidation in alkaline media. Phys. Chem. Chem. Phys. 9:2654-75
    • (2007) Phys. Chem. Chem. Phys. , vol.9 , pp. 2654-2675
    • Spendelow, J.S.1    Wieckowski, A.2
  • 46
    • 28144443225 scopus 로고    scopus 로고
    • Recent development of non-platinum catalysts for oxygen reduction reaction
    • Wang B. 2005. Recent development of non-platinum catalysts for oxygen reduction reaction. J. Power Sources 152:1-15
    • (2005) J. Power Sources , vol.152 , pp. 1-15
    • Wang, B.1
  • 47
    • 84878641424 scopus 로고    scopus 로고
    • Active and stable carbon nanotube/nanoparticle composite electrocatalyst for oxygen reduction
    • Chung HT, Won JH, Zelenay P. 2013. Active and stable carbon nanotube/nanoparticle composite electrocatalyst for oxygen reduction. Nat. Commun. 4:1922
    • (2013) Nat. Commun , pp. 4
    • Chung, H.T.1    Won, J.H.2    Zelenay, P.3
  • 48
    • 83255187152 scopus 로고    scopus 로고
    • A perovskite oxide optimized for oxygen evolution catalysis from molecular orbital principles
    • Suntivich J, May KJ, Gasteiger HA, Goodenough JB, Shao-Horn Y. 2011. A perovskite oxide optimized for oxygen evolution catalysis from molecular orbital principles. Science 334:1383-85
    • (2011) Science , vol.334 , pp. 1383-1385
    • Suntivich, J.1    May, K.J.2    Gasteiger, H.A.3    Goodenough, J.B.4    Shao-Horn, Y.5
  • 49
    • 79959577135 scopus 로고    scopus 로고
    • Design principles for oxygen-reduction activity on perovskite oxide catalysts for fuel cells andmetal-Air batteries
    • Suntivich J, Gasteiger HA, Yabuuchi N, Nakanishi H, Goodenough JB, Shao-Horn Y. 2011. Design principles for oxygen-reduction activity on perovskite oxide catalysts for fuel cells andmetal-Air batteries. Nat. Chem. 3:546-50
    • (2011) Nat. Chem. , vol.3 , pp. 546-550
    • Suntivich, J.1    Gasteiger, H.A.2    Yabuuchi, N.3    Nakanishi, H.4    Goodenough, J.B.5    Shao-Horn, Y.6
  • 50
    • 84864693605 scopus 로고    scopus 로고
    • Supportless silver nanowires as oxygen reduction reaction catalysts for hydroxide-exchange membrane fuel cells
    • Alia SM, Duong K, Liu T, Jensen K, Yan YS. 2012. Supportless silver nanowires as oxygen reduction reaction catalysts for hydroxide-exchange membrane fuel cells. ChemSusChem 5:1619-24
    • (2012) Chem Sus Chem , vol.5 , pp. 1619-1624
    • Alia, S.M.1    Duong, K.2    Liu, T.3    Jensen, K.4    Yan, Y.S.5
  • 51
    • 1542274580 scopus 로고    scopus 로고
    • Long term investigations of silver cathodes for alkaline fuel cells
    • Wagner N, Schulze M, G̈ ulzow E. 2004. Long term investigations of silver cathodes for alkaline fuel cells. J. Power Sources 127:264-72
    • (2004) J. Power Sources , vol.127 , pp. 264-272
    • Wagner, N.1    Schulze, M.2    G̈ulzow, E.3
  • 52
    • 79959353446 scopus 로고    scopus 로고
    • Electrochemical and fuel cell evaluation of Co based catalyst for oxygen reduction in anion exchange polymer membrane fuel cells
    • Mamlouk M, Kumar SMS, Gouerec P, Scott K. 2011. Electrochemical and fuel cell evaluation of Co based catalyst for oxygen reduction in anion exchange polymer membrane fuel cells. J. Power Sources 196:7594-600
    • (2011) J. Power Sources , vol.196 , pp. 7594-7600
    • Mamlouk, M.1    Kumar, S.M.S.2    Gouerec, P.3    Scott, K.4
  • 53
    • 79953886290 scopus 로고    scopus 로고
    • Characterization and application of anion exchange polymer membranes with non-platinum group metals for fuel cells
    • Mamlouk M, Wang X, ScottK,Horsfall JA, WilliamsC. 2011. Characterization and application of anion exchange polymer membranes with non-platinum group metals for fuel cells. Proc. Inst. Mech. Eng. A J. Power Energy 225:152-60
    • (2011) Proc. Inst. Mech. Eng. A J. Power Energy , vol.225 , pp. 152-160
    • Mamlouk, M.1    Wang, X.2    Scott, K.3    Horsfall, J.A.4    Williams, C.5
  • 54
    • 62649121385 scopus 로고    scopus 로고
    • Cell performance of Pd-Sn catalyst in passive direct methanol alkaline fuel cell using anion exchange membrane
    • Kim J,Momma T, Osaka T. 2009. Cell performance of Pd-Sn catalyst in passive direct methanol alkaline fuel cell using anion exchange membrane. J. Power Sources 189:999-1002
    • (2009) J. Power Sources , vol.189 , pp. 999-1002
    • Kim, J.1    Momma, T.2    Osaka, T.3
  • 55
    • 69949125927 scopus 로고    scopus 로고
    • Carbon-supported Co1.67Te2 nanoparticles as electrocatalysts for oxygen reduction reaction in alkaline electrolyte
    • Wu G, Cui GF, Li DY, Shen PK, Li N. 2009. Carbon-supported Co1.67Te2 nanoparticles as electrocatalysts for oxygen reduction reaction in alkaline electrolyte. J. Mater. Chem. 19:6581-89
    • (2009) J. Mater. Chem. , vol.19 , pp. 6581-6589
    • Wu, G.1    Cui, G.F.2    Li, D.Y.3    Shen, P.K.4    Li, N.5
  • 56
    • 77953132948 scopus 로고    scopus 로고
    • H-2/air alkaline membrane fuel cell performance and durability, using novel ionomer and non-platinum group metal cathode catalyst
    • Piana M, Boccia M, Filpi A, Flammia E, Miller HA, et al. 2010. H-2/air alkaline membrane fuel cell performance and durability, using novel ionomer and non-platinum group metal cathode catalyst. J. Power Sources 195:5875-81
    • (2010) J. Power Sources , vol.195 , pp. 5875-5881
    • Piana, M.1    Boccia, M.2    Filpi, A.3    Flammia, E.4    Miller, H.A.5
  • 57
    • 63149121723 scopus 로고    scopus 로고
    • Anion exchange membrane and ionomer for alkaline membrane fuel cells (AEMFCs)
    • Yanagi H, Fukuta K. 2008. Anion exchange membrane and ionomer for alkaline membrane fuel cells (AEMFCs). ECS Trans. 16:257-62
    • (2008) ECS Trans. , vol.16 , pp. 257-262
    • Yanagi, H.1    Fukuta, K.2
  • 58
    • 78149459172 scopus 로고    scopus 로고
    • Self-crosslinked alkaline polymer electrolyte exceptionally stable at 90C
    • Pan J, Li Y, Zhuang L, Lu JT. 2010. Self-crosslinked alkaline polymer electrolyte exceptionally stable at 90C. Chem. Commun. 46:8597-99
    • (2010) Chem. Commun. , vol.46 , pp. 8597-8599
    • Pan, J.1    Li, Y.2    Zhuang, L.3    Lu, J.T.4
  • 59
    • 0034240591 scopus 로고    scopus 로고
    • Relation of energies and coverages of underpotential and overpotential deposited H at Pt and other metals to the 'volcano curve' for cathodic H2 evolution kinetics
    • Conway BE, Jerkiewicz G. 2000. Relation of energies and coverages of underpotential and overpotential deposited H at Pt and other metals to the 'volcano curve' for cathodic H2 evolution kinetics. Electrochim. Acta 45:4075-83
    • (2000) Electrochim. Acta , vol.45 , pp. 4075-4083
    • Conway, B.E.1    Jerkiewicz, G.2
  • 60
    • 84878092949 scopus 로고    scopus 로고
    • Correlating the hydrogen evolution reaction activity in alkaline electrolytes with the hydrogen binding energy on monometallic surfaces
    • Sheng WC, Myint M, Chen JGG, Yan YS. 2013. Correlating the hydrogen evolution reaction activity in alkaline electrolytes with the hydrogen binding energy on monometallic surfaces. Energy Environ. Sci. 6:1509-12
    • (2013) Energy Environ. Sci. , vol.6 , pp. 1509-1512
    • Sheng, W.C.1    Myint, M.2    Chen, J.G.G.3    Yan, Y.S.4
  • 61
    • 77957692480 scopus 로고    scopus 로고
    • Hydrogen oxidation and evolution reaction kinetics on platinum: Acid versus alkaline electrolytes
    • Sheng WC, Gasteiger HA, Shao-Horn Y. 2010. Hydrogen oxidation and evolution reaction kinetics on platinum: acid versus alkaline electrolytes. J. Electrochem. Soc. 157:B1529-B36
    • (2010) J. Electrochem. Soc. , vol.157
    • Sheng, W.C.1    Gasteiger, H.A.2    Shao-Horn, Y.3
  • 62
    • 0032050091 scopus 로고    scopus 로고
    • Specificity of the kinetics of H2 evolution to the structure of single-crystal Pt surfaces, and the relation between OPD and UPD H
    • Barber J, Morin S, Conway BE. 1998. Specificity of the kinetics of H2 evolution to the structure of single-crystal Pt surfaces, and the relation between OPD and UPD H. J. Electroanal. Chem. 446:125-38
    • (1998) J. Electroanal. Chem. , vol.446 , pp. 125-138
    • Barber, J.1    Morin, S.2    Conway, B.E.3
  • 63
    • 0039033810 scopus 로고
    • Determination of adsorption of OPD H species in the cathodic hydrogen evolution reaction at Pt in relation to electrocatalysis
    • Conway BE, Bai L. 1986. Determination of adsorption of OPD H species in the cathodic hydrogen evolution reaction at Pt in relation to electrocatalysis. J. Electroanal. Chem. 198:149-75
    • (1986) J. Electroanal. Chem. , vol.198 , pp. 149-175
    • Conway, B.E.1    Bai, L.2
  • 64
    • 84884181927 scopus 로고    scopus 로고
    • Platinum-coated copper nanowires with high activity for hydrogen oxidation reaction in base
    • Alia SM, Pivovar BS, Yan Y. 2013. Platinum-coated copper nanowires with high activity for hydrogen oxidation reaction in base. J. Am. Chem. Soc. 135:13473-78
    • (2013) J. Am. Chem. Soc. , vol.135 , pp. 13473-13478
    • Alia, S.M.1    Pivovar, B.S.2    Yan, Y.3
  • 65
    • 84875443259 scopus 로고    scopus 로고
    • Improving the hydrogen oxidation reaction rate by promotion of hydroxyl adsorption
    • Strmcnik D, Uchimura M, Wang C, Subbaraman R, Danilovic N, et al. Improving the hydrogen oxidation reaction rate by promotion of hydroxyl adsorption. Nat. Chem. 5:300-6
    • Nat. Chem. , vol.5 , pp. 300-306
    • Strmcnik, D.1    Uchimura, M.2    Wang, C.3    Subbaraman, R.4    Danilovic, N.5
  • 66
    • 0028460443 scopus 로고
    • The hydrogen evolution reaction on nickel surfaces stabilized by Habsorption
    • Machado SAS, Avaca LA. 1994. The hydrogen evolution reaction on nickel surfaces stabilized by Habsorption. Electrochim. Acta 39:1385-91
    • (1994) Electrochim. Acta , vol.39 , pp. 1385-1391
    • MacHado, S.A.S.1    Avaca, L.A.2
  • 69
    • 38149008141 scopus 로고    scopus 로고
    • Development of cathode architectures customized for H2/O2 metal-cation-free alkaline membrane fuel
    • Tamain C, Poynton SA, Slade RCT, Carroll B, Varcoe JR. 2007. Development of cathode architectures customized for H2/O2 metal-cation-free alkaline membrane fuel. J. Phys. Chem. C 111:18423-30
    • (2007) J. Phys. Chem. C , vol.111 , pp. 18423-18430
    • Tamain, C.1    Poynton, S.A.2    Slade, R.C.T.3    Carroll, B.4    Varcoe, J.R.5
  • 71
    • 78449291717 scopus 로고    scopus 로고
    • Semiconductor quantum dots and quantum dot arrays and applications of multiple exciton generation to third-generation photovoltaic solar cells
    • Nozik AJ, BeardMC, Luther JM, LawM, Ellingson RJ, Johnson JC. 2010. Semiconductor quantum dots and quantum dot arrays and applications of multiple exciton generation to third-generation photovoltaic solar cells. Chem. Rev. 110:6873-90
    • (2010) Chem. Rev. , vol.110 , pp. 6873-6890
    • Nozik, A.J.1    Beard, M.C.2    Luther, J.M.3    Law, M.4    Ellingson, R.J.5    Johnson, J.C.6
  • 72
    • 34248396741 scopus 로고    scopus 로고
    • Conjugated polymer-based organic solar cells
    • G̈ unes S, Neugebauer H, Sariciftci NS. 2007. Conjugated polymer-based organic solar cells. Chem. Rev. 107:1324-38
    • (2007) Chem. Rev. , vol.107 , pp. 1324-1338
    • G̈unes, S.1    Neugebauer, H.2    Sariciftci, N.S.3
  • 73
    • 0032593267 scopus 로고    scopus 로고
    • Crystalline Si thin-film solar cells: A review
    • Bergmann RB. 1999. Crystalline Si thin-film solar cells: a review. App. Phys. A. 69:187-94
    • (1999) App. Phys. A. , vol.69 , pp. 187-194
    • Bergmann, R.B.1
  • 74
    • 34250888105 scopus 로고    scopus 로고
    • Evaluating the limits of solar photovoltaics (PV) in electric power systems utilizing energy storage and other enabling technologies
    • Denholm P, Margolis RM. 2007. Evaluating the limits of solar photovoltaics (PV) in electric power systems utilizing energy storage and other enabling technologies. Energy Policy 35:4424-33
    • (2007) Energy Policy , vol.35 , pp. 4424-4433
    • Denholm, P.1    Margolis, R.M.2
  • 75
    • 33847728551 scopus 로고    scopus 로고
    • Evaluating the limits of solar photovoltaics (PV) in traditional electric power systems
    • Denholm P, Margolis RM. 2007. Evaluating the limits of solar photovoltaics (PV) in traditional electric power systems. Energy Policy 35:2852-61
    • (2007) Energy Policy , vol.35 , pp. 2852-2861
    • Denholm, P.1    Margolis, R.M.2
  • 76
    • 44349093391 scopus 로고    scopus 로고
    • Photochemical conversion of solar energy
    • Balzani V, Credi A, VenturiM. 2008. Photochemical conversion of solar energy. Chem Sus Chem 1:26-58
    • (2008) Chem Sus Chem , vol.1 , pp. 26-58
    • Balzani, V.1    Credi, A.2    Venturi, M.3
  • 78
    • 35348875044 scopus 로고
    • Electrochemical photolysis of water at a semiconductor electrode
    • Fujishima A, Honda K. 1972. Electrochemical photolysis of water at a semiconductor electrode. Nature 238:37-38
    • (1972) Nature , vol.238 , pp. 37-38
    • Fujishima, A.1    Honda, K.2
  • 79
    • 33645027408 scopus 로고    scopus 로고
    • Photocatalyst releasing hydrogen from water-enhancing catalytic performance holds promise for hydrogen production by water splitting in sunlight
    • Maeda K, Teramura K, Lu DL, Takata T, Saito N, et al. 2006. Photocatalyst releasing hydrogen from water-enhancing catalytic performance holds promise for hydrogen production by water splitting in sunlight. Nature 440:295
    • (2006) Nature , vol.440 , pp. 295
    • Maeda, K.1    Teramura, K.2    Lu, D.L.3    Takata, T.4    Saito, N.5
  • 80
    • 77956838396 scopus 로고    scopus 로고
    • Photocatalytic water splitting: Recent progress and future challenges
    • Maeda K, Domen K. 2010. Photocatalytic water splitting: recent progress and future challenges. J. Phys. Chem. Lett. 1:2655-61
    • (2010) J. Phys. Chem. Lett. , vol.1 , pp. 2655-2661
    • Maeda, K.1    Domen, K.2
  • 81
    • 77952567707 scopus 로고    scopus 로고
    • Efficient nonsacrificial water splitting through twostep photoexcitation by visible light using a modified oxynitride as a hydrogen evolution photocatalyst
    • MaedaK,HigashiM,LuDL,Abe R,DomenK. 2010. Efficient nonsacrificial water splitting through twostep photoexcitation by visible light using a modified oxynitride as a hydrogen evolution photocatalyst. J. Am. Chem. Soc. 132:5858-68
    • (2010) J. Am. Chem. Soc. , vol.132 , pp. 5858-5868
    • Maeda, K.1    Higashi, M.2    Lu, D.L.3    Abe, R.4    Domen, K.5
  • 82
    • 84877146843 scopus 로고    scopus 로고
    • Recent progress in the development of (oxy)nitride photocatalysts for water splitting under visible-light irradiation
    • Moriya Y, Takata T, Domen K. 2013. Recent progress in the development of (oxy)nitride photocatalysts for water splitting under visible-light irradiation. Coord. Chem. Rev. 257:1957-69
    • (2013) Coord. Chem. Rev. , vol.257 , pp. 1957-1969
    • Moriya, Y.1    Takata, T.2    Domen, K.3
  • 83
    • 82055161674 scopus 로고    scopus 로고
    • Plasmonic-metal nanostructures for efficient conversion of solar to chemical energy
    • Linic S, Christopher P, Ingram DB. 2011. Plasmonic-metal nanostructures for efficient conversion of solar to chemical energy. Nat. Mater. 10:911-21
    • (2011) Nat. Mater. , vol.10 , pp. 911-921
    • Linic, S.1    Christopher, P.2    Ingram, D.B.3
  • 84
    • 79955696615 scopus 로고    scopus 로고
    • Electrical conductivity, ionic conductivity, optical absorption, and gas separation properties of ionically conductive polymer membranes embedded with Si microwire arrays
    • Spurgeon JM, Walter MG, Zhou JF, Kohl PA, Lewis NS. 2011. Electrical conductivity, ionic conductivity, optical absorption, and gas separation properties of ionically conductive polymer membranes embedded with Si microwire arrays. Energy Environ. Sci. 4:1772-80
    • (2011) Energy Environ. Sci. , vol.4 , pp. 1772-1780
    • Spurgeon, J.M.1    Walter, M.G.2    Zhou, J.F.3    Kohl, P.A.4    Lewis, N.S.5
  • 85
    • 79960990390 scopus 로고    scopus 로고
    • Proton exchange membrane electrolysis sustained by water vapor
    • Spurgeon JM, Lewis NS. 2011. Proton exchange membrane electrolysis sustained by water vapor. Energy Environ. Sci. 4:2993-98
    • (2011) Energy Environ. Sci. , vol.4 , pp. 2993-2998
    • Spurgeon, J.M.1    Lewis, N.S.2
  • 86
    • 0008434334 scopus 로고
    • Definition of the intrinsic rate of photocatalytic cleavage of water over Pt-RuO2/TiO2 catalysts
    • Karakitsou K, Verykios XE. 1995. Definition of the intrinsic rate of photocatalytic cleavage of water over Pt-RuO2/TiO2 catalysts. J. Catal. 152:360-67
    • (1995) J. Catal. , vol.152 , pp. 360-367
    • Karakitsou, K.1    Verykios, X.E.2
  • 88
    • 0015995010 scopus 로고
    • Electrically rechargeable redox flow cells
    • New York: Am. Soc. Mech. Eng
    • Thaller LH. 1974. Electrically rechargeable redox flow cells. Proc. 9th Intersoc. Energy Convers. Eng. Conf. Proc., pp. 924-28. New York: Am. Soc. Mech. Eng.
    • (1974) Proc. 9th Intersoc. Energy Convers. Eng. Conf. Proc , pp. 924-928
    • Thaller, L.H.1
  • 92
    • 84867390232 scopus 로고    scopus 로고
    • Progress in redox flow batteries, remaining challenges and their applications in energy storage
    • Leung P, Li XH, de Leon CP, Berlouis L, Low CTJ, Walsh FC. 2012. Progress in redox flow batteries, remaining challenges and their applications in energy storage. RSC Adv. 2:10125-56
    • (2012) RSC Adv. , vol.2 , pp. 10125-10156
    • Leung, P.1    Li, X.H.2    De Leon, C.P.3    Berlouis, L.4    Low, C.T.J.5    Walsh, F.C.6
  • 95
    • 0019399401 scopus 로고
    • Investigation of factors affecting performance of the iron-redox battery
    • Hruska LW, Savinell RF. 1981. Investigation of factors affecting performance of the iron-redox battery. J. Electrochem. Soc. 128:18-25
    • (1981) J. Electrochem. Soc. , vol.128 , pp. 18-25
    • Hruska, L.W.1    Savinell, R.F.2
  • 97
    • 18344373681 scopus 로고    scopus 로고
    • Electron-transfer kinetics of Np3+/Np4+, NpO2 +/NpO2 2+, V2+/V3+, and VO2+/VO2 + at carbon electrodes
    • Yamamura T, Watanabe N, Yano T, Shiokawa Y. 2005. Electron-transfer kinetics of Np3+/Np4+, NpO2 +/NpO2 2+, V2+/V3+, and VO2+/VO2 + at carbon electrodes. J. Electrochem. Soc. 152:A830-36
    • (2005) J. Electrochem. Soc. , vol.152
    • Yamamura, T.1    Watanabe, N.2    Yano, T.3    Shiokawa, Y.4
  • 98
    • 2442557960 scopus 로고    scopus 로고
    • A novel flow battery: A lead acid battery based on an electrolyte with soluble lead(II). Part I. Preliminary studies
    • Hazza A, Pletcher D, Wills R. 2004. A novel flow battery: a lead acid battery based on an electrolyte with soluble lead(II). Part I. Preliminary studies. Phys. Chem. Chem. Phys. 6:1773-78
    • (2004) Phys. Chem. Chem. Phys. , vol.6 , pp. 1773-1778
    • Hazza, A.1    Pletcher, D.2    Wills, R.3
  • 101
    • 84902496498 scopus 로고    scopus 로고
    • Amultiple ion-exchange membrane design for redox flow batteries
    • In press. doi: 10.1039/C4EE00165F
    • Gu S, Gong K, Yan EZ, Yan Y. 2014. Amultiple ion-exchange membrane design for redox flow batteries. Energy Environ. Sci. In press. doi: 10.1039/C4EE00165F
    • (2014) Energy Environ. Sci.
    • Gu, S.1    Gong, K.2    Yan, E.Z.3    Yan, Y.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.