-
2
-
-
0000408919
-
Coherent ion-exchange gels and membrane
-
Juda W, McRaeWA. 1950. Coherent ion-exchange gels and membranes. J. Am. Chem. Soc. 72:1043-44
-
(1950)
J. Am. Chem. Soc.
, vol.72
, pp. 1043-1044
-
-
Juda, W.1
McRae, W.A.2
-
3
-
-
2442560684
-
-
US Patent No. 2 913 511
-
Grubb WT. 1959. Fuel cell. US Patent No. 2,913,511
-
(1959)
Fuel Cell
-
-
Grubb, W.T.1
-
4
-
-
0026696529
-
Thin-film catalyst layers for polymer electrolyte fuel-cell electrodes
-
Wilson MS, Gottesfeld S. 1992. Thin-film catalyst layers for polymer electrolyte fuel-cell electrodes. J. Appl. Electrochem. 22:1-7
-
(1992)
J. Appl. Electrochem.
, vol.22
, pp. 1-7
-
-
Wilson, M.S.1
Gottesfeld, S.2
-
5
-
-
35748941340
-
Scientific aspects of polymer electrolyte fuel cell durability and degradation
-
Borup R,Meyers J, Pivovar B, Kim YS, Mukundan R, et al. 2007. Scientific aspects of polymer electrolyte fuel cell durability and degradation. Chem. Rev. 107:3904-51
-
(2007)
Chem. Rev.
, vol.107
, pp. 3904-3951
-
-
Borup Rmeyers, J.1
Pivovar, B.2
Kim, Y.S.3
Mukundan, R.4
-
6
-
-
33748435774
-
A class of non-precious metal composite catalysts for fuel cells
-
Bashyam R, Zelenay P. 2006. A class of non-precious metal composite catalysts for fuel cells. Nature 443:63-66
-
(2006)
Nature
, vol.443
, pp. 63-66
-
-
Bashyam, R.1
Zelenay, P.2
-
7
-
-
79955405239
-
High-performance electrocatalysts for oxygen reduction derived from polyaniline, iron, and cobalt
-
Wu G, More KL, Johnston CM, Zelenay P. 2011. High-performance electrocatalysts for oxygen reduction derived from polyaniline, iron, and cobalt. Science 332:443-47
-
(2011)
Science
, vol.332
, pp. 443-447
-
-
Wu, G.1
More, K.L.2
Johnston, C.M.3
Zelenay, P.4
-
8
-
-
0000176241
-
The DSK system of fuel cell electrodes
-
Justi EW, Winsel AW. 1961. The DSK system of fuel cell electrodes. J. Electrochem. Soc. 108:1073-79
-
(1961)
J. Electrochem. Soc.
, vol.108
, pp. 1073-1079
-
-
Justi, E.W.1
Winsel, A.W.2
-
9
-
-
0035888337
-
Characterization and use of anionic membranes for alkaline fuel cells
-
Agel E, Bouet J, Fauvarque JF. 2001. Characterization and use of anionic membranes for alkaline fuel cells. J. Power Sources 101:267-74
-
(2001)
J. Power Sources
, vol.101
, pp. 267-274
-
-
Agel, E.1
Bouet, J.2
Fauvarque, J.F.3
-
10
-
-
18444373261
-
Prospects for alkaline anion-exchange membranes in low temperature fuel cells
-
Varcoe JR, Slade RCT. 2005. Prospects for alkaline anion-exchange membranes in low temperature fuel cells. Fuel Cells 5:187-200
-
(2005)
Fuel Cells
, vol.5
, pp. 187-200
-
-
Varcoe, J.R.1
Slade, R.C.T.2
-
11
-
-
58549084170
-
Alkaline polymer electrolyte fuel cells completely free from noble metal catalysts
-
Lu SF, Pan J, Huang AB, Zhuang L, Lu JT. 2008. Alkaline polymer electrolyte fuel cells completely free from noble metal catalysts. Proc. Natl. Acad. Sci. USA 105:20611-14
-
(2008)
Proc. Natl. Acad. Sci. USA
, vol.105
, pp. 20611-20614
-
-
Lu, S.F.1
Pan, J.2
Huang, A.B.3
Zhuang, L.4
Lu, J.T.5
-
12
-
-
84870477131
-
An efficient Ag-ionomer interface for hydroxide exchange membrane fuel cells
-
Gu S, Sheng WC, Cai R, Alia SM, Song SQ, et al. 2013. An efficient Ag-ionomer interface for hydroxide exchange membrane fuel cells. Chem. Commun. 49:131-33
-
(2013)
Chem. Commun.
, vol.49
, pp. 131-133
-
-
Gu, S.1
Sheng, W.C.2
Cai, R.3
Alia, S.M.4
Song, S.Q.5
-
13
-
-
33751259961
-
Steady-state dc and impedance investigations of H2/O2 alkaline membrane fuel cells with commercial Pt/C, Ag/C, and Au/C catshodes
-
Varcoe JR, Slade RCT, Wright GL, Chen YL. 2006. Steady-state dc and impedance investigations of H2/O2 alkaline membrane fuel cells with commercial Pt/C, Ag/C, and Au/C cathodes. J. Phys. Chem. B 110:21041-49
-
(2006)
J. Phys. Chem. B
, vol.110
, pp. 21041-21049
-
-
Varcoe, J.R.1
Slade, R.C.T.2
Wright, G.L.3
Chen, Y.L.4
-
15
-
-
84902473769
-
The effect of gas diffusion media on AMFC performance
-
Isomura T, Fukuta K, Yanagi H, Ge SH,Wang CY. 2012. The effect of gas diffusion media on AMFC performance. ECS Meet. Abstr. MA2012-02:1594
-
(2012)
ECS Meet. Abstr. MA2012-02
, pp. 1594
-
-
Isomura, T.1
Fukuta, K.2
Yanagi, H.3
Ge, S.H.4
Wang, C.Y.5
-
16
-
-
84856729361
-
Direct oxidation alkaline fuel cells: From materials to systems
-
Yu EH,Wang X, Krewer U, Li L, Scott K. 2012. Direct oxidation alkaline fuel cells: from materials to systems. Energy Environ. Sci. 5:5668-80
-
(2012)
Energy Environ. Sci.
, vol.5
, pp. 5668-5680
-
-
Yu, E.H.1
Wang, X.2
Krewer, U.3
Li, L.4
Scott, K.5
-
17
-
-
0036954379
-
Preliminary study on direct alcohol fuel cells employing anion exchange membrane
-
Ogumi Z,Matsuoka K, Chiba S, MatsuokaM, Iriyama Y, et al. 2002. Preliminary study on direct alcohol fuel cells employing anion exchange membrane. Electrochemistry 70:980-83
-
(2002)
Electrochemistry
, vol.70
, pp. 980-983
-
-
Ogumi, Z.1
Matsuoka, K.2
Chiba, S.3
Matsuoka, M.4
Iriyama, Y.5
-
18
-
-
56049117943
-
Direct ethanol fuel cells using an anion exchange membrane
-
Fujiwara N, Siroma Z, Yamazaki SI, Ioroi T, Senoh H, Yasuda K. 2008. Direct ethanol fuel cells using an anion exchange membrane. J. Power Sources 185:621-26
-
(2008)
J. Power Sources
, vol.185
, pp. 621-626
-
-
Fujiwara, N.1
Siroma, Z.2
Yamazaki, S.I.3
Ioroi, T.4
Senoh, H.5
Yasuda, K.6
-
19
-
-
24944465649
-
Alkaline direct alcohol fuel cells using an anion exchange membrane
-
Matsuoka K, Iriyama Y, Abe T, MatsuokaM, Ogumi Z. 2005. Alkaline direct alcohol fuel cells using an anion exchange membrane. J. Power Sources 150:27-31
-
(2005)
J. Power Sources
, vol.150
, pp. 27-31
-
-
Matsuoka, K.1
Iriyama, Y.2
Abe, T.3
Matsuoka, M.4
Ogumi, Z.5
-
20
-
-
0141997698
-
Potential application of anionexchange membrane for hydrazine fuel cell electrolyte
-
Yamada K, Yasuda K, Fujiwara N, Siroma Z, Tanaka H, et al. 2003. Potential application of anionexchange membrane for hydrazine fuel cell electrolyte. Electrochem. Commun. 5:892-96
-
(2003)
Electrochem. Commun.
, vol.5
, pp. 892-896
-
-
Yamada, K.1
Yasuda, K.2
Fujiwara, N.3
Siroma, Z.4
Tanaka, H.5
-
21
-
-
77953588746
-
Direct ammonia alkaline anion-exchange membrane fuel cells
-
Lan R, Tao SW. 2010. Direct ammonia alkaline anion-exchange membrane fuel cells. Electrochem. Solid-St. Lett. 13:B83-B86
-
(2010)
Electrochem. Solid-St. Lett.
, vol.13
-
-
Lan, R.1
Tao, S.W.2
-
22
-
-
58549096094
-
Nonenzymatic glucose fuel cells with an anion exchange membrane as an electrolyte
-
Fujiwara N, Yamazaki S, Siroma Z, Ioroi T, Senoh H, Yasuda K. 2009. Nonenzymatic glucose fuel cells with an anion exchange membrane as an electrolyte. Electrochem. Commun. 11:390-92
-
(2009)
Electrochem. Commun.
, vol.11
, pp. 390-392
-
-
Fujiwara, N.1
Yamazaki, S.2
Siroma, Z.3
Ioroi, T.4
Senoh, H.5
Yasuda, K.6
-
24
-
-
52749090013
-
A carbon dioxide tolerant aqueouselectrolyte-free anion-exchange membrane alkaline fuel cell
-
Adams LA, Poynton SD, Tamain C, Slade RCT, Varcoe JR. 2008. A carbon dioxide tolerant aqueouselectrolyte-free anion-exchange membrane alkaline fuel cell. Chem Sus Chem 1:79-81
-
(2008)
Chem Sus Chem
, vol.1
, pp. 79-81
-
-
Adams, L.A.1
Poynton, S.D.2
Tamain, C.3
Slade, R.C.T.4
Varcoe, J.R.5
-
25
-
-
78649916685
-
In-situ observation of CO2 through the self-purging in alkaline membrane fuel cell (AMFC)
-
Fukuta K, Inoue H, Watanabe S, Yanagi H. 2009. In-situ observation of CO2 through the self-purging in alkaline membrane fuel cell (AMFC). ECS Trans. 19:23-27
-
(2009)
ECS Trans.
, vol.19
, pp. 23-27
-
-
Fukuta, K.1
Inoue, H.2
Watanabe, S.3
Yanagi, H.4
-
26
-
-
84863337666
-
Designing advanced alkaline polymer electrolytes for fuel cell applications
-
Pan J, Chen C, Zhuang L, Lu JT. 2012. Designing advanced alkaline polymer electrolytes for fuel cell applications. Acc. Chem. Res. 45:473-81
-
(2012)
Acc. Chem. Res.
, vol.45
, pp. 473-481
-
-
Pan, J.1
Chen, C.2
Zhuang, L.3
Lu, J.T.4
-
27
-
-
79958032370
-
Anion exchange membranes for alkaline fuel cells: A review
-
Merle G, Wessling M, Nijmeijer K. 2011. Anion exchange membranes for alkaline fuel cells: a review. J. Membr. Sci. 377:1-35
-
(2011)
J. Membr. Sci.
, vol.377
, pp. 1-35
-
-
Merle, G.1
Wessling, M.2
Nijmeijer, K.3
-
28
-
-
77950948354
-
Alkaline polymer electrolyte fuel cells: Principle, challenges, and recent progress
-
Tang DP, Pan J, Lu SF, Zhuang L, Lu JT. 2010. Alkaline polymer electrolyte fuel cells: principle, challenges, and recent progress. Sci. China Chem. 53:357-64
-
(2010)
Sci. China Chem.
, vol.53
, pp. 357-364
-
-
Tang, D.P.1
Pan, J.2
Lu, S.F.3
Zhuang, L.4
Lu, J.T.5
-
29
-
-
77951188052
-
Ion-containing polymers: New energy & clean water
-
Hickner MA. 2010. Ion-containing polymers: new energy & clean water. Mater. Today 13:34-41
-
(2010)
Mater. Today
, vol.13
, pp. 34-41
-
-
Hickner, M.A.1
-
30
-
-
84861079878
-
Recent development of polymer electrolyte membranes for fuel cells
-
ZhangHW, Shen PK. 2012. Recent development of polymer electrolyte membranes for fuel cells. Chem. Rev. 112:2780-832
-
(2012)
Chem. Rev.
, vol.112
, pp. 2780-2832
-
-
Zhang, H.W.1
Shen, P.K.2
-
31
-
-
79960556626
-
Polymeric materials as anion-exchange membranes for alkaline fuel cells
-
Couture G, Alaaeddine A, Boschet F, Ameduri B. 2011. Polymeric materials as anion-exchange membranes for alkaline fuel cells. Prog. Polym. Sci. 36:1521-57
-
(2011)
Prog. Polym. Sci.
, vol.36
, pp. 1521-1557
-
-
Couture, G.1
Alaaeddine, A.2
Boschet, F.3
Ameduri, B.4
-
32
-
-
77956062177
-
Synthesis and properties of anion-exchange membranes for fuel cells
-
Shevchenko VV, Gumennaya MA. 2010. Synthesis and properties of anion-exchange membranes for fuel cells. Theor. Exp. Chem. 46:139-52
-
(2010)
Theor. Exp. Chem.
, vol.46
, pp. 139-152
-
-
Shevchenko, V.V.1
Gumennaya, M.A.2
-
33
-
-
84863275799
-
Advances in the high performance polymer electrolyte membranes for fuel cells
-
Zhang HW, Shen PK. 2012. Advances in the high performance polymer electrolyte membranes for fuel cells. Chem. Soc. Rev. 41:2382-94
-
(2012)
Chem. Soc. Rev.
, vol.41
, pp. 2382-2394
-
-
Zhang, H.W.1
Shen, P.K.2
-
34
-
-
77949566695
-
Synthetic polymers with quaternary nitrogen atoms-synthesis and structure of the most used type of cationic polyelectrolytes
-
Jaeger W, Bohrisch J, Laschewsky A. 2010. Synthetic polymers with quaternary nitrogen atoms-synthesis and structure of the most used type of cationic polyelectrolytes. Prog. Polym. Sci. 35:511-77
-
(2010)
Prog. Polym. Sci.
, vol.35
, pp. 511-577
-
-
Jaeger, W.1
Bohrisch, J.2
Laschewsky, A.3
-
35
-
-
70349932067
-
A soluble and highly conductive ionomer for high-performance hydroxide exchange membrane fuel cells
-
Gu S, Cai R, Luo T, Chen ZW, Sun MW, et al. 2009. A soluble and highly conductive ionomer for high-performance hydroxide exchange membrane fuel cells. Angew. Chem. Int. Ed. 48:6499-502
-
(2009)
Angew. Chem. Int. Ed.
, vol.48
, pp. 6499-6502
-
-
Gu, S.1
Cai, R.2
Luo, T.3
Chen, Z.W.4
Sun, M.W.5
-
36
-
-
77955745082
-
Quaternary phosphonium-based polymers as hydroxide exchange membranes
-
Gu S, Cai R, Luo T, Jensen K, Contreras C, Yan YS. 2010. Quaternary phosphonium-based polymers as hydroxide exchange membranes. Chem Sus Chem 3:555-58
-
(2010)
Chem Sus Chem
, vol.3
, pp. 555-558
-
-
Gu, S.1
Cai, R.2
Luo, T.3
Jensen, K.4
Contreras, C.5
Yan, Y.S.6
-
37
-
-
79951884311
-
Self-crosslinking for dimensionally stable and solvent-resistant quaternary phosphonium based hydroxide exchange membranes
-
Gu S, Cai R, Yan YS. 2011. Self-crosslinking for dimensionally stable and solvent-resistant quaternary phosphonium based hydroxide exchange membranes. Chem. Commun. 47:2856-58
-
(2011)
Chem. Commun.
, vol.47
, pp. 2856-2858
-
-
Gu, S.1
Cai, R.2
Yan, Y.S.3
-
38
-
-
84870009447
-
Tertiary sulfonium as a cationic functional group for hydroxide exchange membranes
-
ZhangBZ,GuS,WangJH,Liu Y, Herring AM,Yan YS. 2012. Tertiary sulfonium as a cationic functional group for hydroxide exchange membranes. RSC Adv. 2:12683-85
-
(2012)
RSC Adv.
, vol.2
, pp. 12683-12685
-
-
Zhang, B.Z.1
Gu, S.2
Wang, J.H.3
Liu, Y.4
Herring, A.M.5
Yan, Y.S.6
-
39
-
-
77951191215
-
Novel hydroxide-conducting polyelectrolyte composed of an poly(arylene ether sulfone) containing pendant quaternary guanidinium groups for alkaline fuel cell applications
-
Wang JH, Li SH, Zhang SB. 2010. Novel hydroxide-conducting polyelectrolyte composed of an poly(arylene ether sulfone) containing pendant quaternary guanidinium groups for alkaline fuel cell applications. Macromolecules 43:3890-96
-
(2010)
Macromolecules
, vol.43
, pp. 3890-3896
-
-
Wang, J.H.1
Li, S.H.2
Zhang, S.B.3
-
40
-
-
77955654594
-
Synthesis and characterization of novel anion exchange membranes based on imidazolium-type ionic liquid for alkaline fuel cells
-
Guo ML, Fang J, Xu HK, Li W, Lu XH, et al. 2010. Synthesis and characterization of novel anion exchange membranes based on imidazolium-type ionic liquid for alkaline fuel cells. J. Membr. Sci. 362:97-104
-
(2010)
J. Membr. Sci.
, vol.362
, pp. 97-104
-
-
Guo, M.L.1
Fang, J.2
Xu, H.K.3
Li, W.4
Lu, X.H.5
-
41
-
-
84858216777
-
Metal-cation-based anion exchange membranes
-
Zha YP, Disabb-Miller ML, Johnson ZD, Hickner MA, Tew GN. 2012. Metal-cation-based anion exchange membranes. J. Am. Chem. Soc. 134:4493-96
-
(2012)
J. Am. Chem. Soc.
, vol.134
, pp. 4493-4496
-
-
Zha, Y.P.1
Disabb-Miller, M.L.2
Johnson, Z.D.3
Hickner, M.A.4
Tew, G.N.5
-
42
-
-
84861181141
-
Engineering the van der Waals interaction in cross-linking-free hydroxide exchange membranes for low swelling and high conductivity
-
Gu S, Skovgard J, Yan YS. 2012. Engineering the van der Waals interaction in cross-linking-free hydroxide exchange membranes for low swelling and high conductivity. Chem Sus Chem 5:843-48
-
(2012)
Chem Sus Chem
, vol.5
, pp. 843-848
-
-
Gu, S.1
Skovgard, J.2
Yan, Y.S.3
-
43
-
-
75749106130
-
Alkaline direct alcohol fuel cells
-
Antolini E, Gonzalez ER. 2010. Alkaline direct alcohol fuel cells. J. Power Sources 195:3431-50
-
(2010)
J. Power Sources
, vol.195
, pp. 3431-3450
-
-
Antolini, E.1
Gonzalez, E.R.2
-
44
-
-
34447344487
-
Electrocatalysis of oxygen reduction and small alcohol oxidation in alkaline media
-
Spendelow JS, Wieckowski A. 2007. Electrocatalysis of oxygen reduction and small alcohol oxidation in alkaline media. Phys. Chem. Chem. Phys. 9:2654-75
-
(2007)
Phys. Chem. Chem. Phys.
, vol.9
, pp. 2654-2675
-
-
Spendelow, J.S.1
Wieckowski, A.2
-
46
-
-
28144443225
-
Recent development of non-platinum catalysts for oxygen reduction reaction
-
Wang B. 2005. Recent development of non-platinum catalysts for oxygen reduction reaction. J. Power Sources 152:1-15
-
(2005)
J. Power Sources
, vol.152
, pp. 1-15
-
-
Wang, B.1
-
47
-
-
84878641424
-
Active and stable carbon nanotube/nanoparticle composite electrocatalyst for oxygen reduction
-
Chung HT, Won JH, Zelenay P. 2013. Active and stable carbon nanotube/nanoparticle composite electrocatalyst for oxygen reduction. Nat. Commun. 4:1922
-
(2013)
Nat. Commun
, pp. 4
-
-
Chung, H.T.1
Won, J.H.2
Zelenay, P.3
-
48
-
-
83255187152
-
A perovskite oxide optimized for oxygen evolution catalysis from molecular orbital principles
-
Suntivich J, May KJ, Gasteiger HA, Goodenough JB, Shao-Horn Y. 2011. A perovskite oxide optimized for oxygen evolution catalysis from molecular orbital principles. Science 334:1383-85
-
(2011)
Science
, vol.334
, pp. 1383-1385
-
-
Suntivich, J.1
May, K.J.2
Gasteiger, H.A.3
Goodenough, J.B.4
Shao-Horn, Y.5
-
49
-
-
79959577135
-
Design principles for oxygen-reduction activity on perovskite oxide catalysts for fuel cells andmetal-Air batteries
-
Suntivich J, Gasteiger HA, Yabuuchi N, Nakanishi H, Goodenough JB, Shao-Horn Y. 2011. Design principles for oxygen-reduction activity on perovskite oxide catalysts for fuel cells andmetal-Air batteries. Nat. Chem. 3:546-50
-
(2011)
Nat. Chem.
, vol.3
, pp. 546-550
-
-
Suntivich, J.1
Gasteiger, H.A.2
Yabuuchi, N.3
Nakanishi, H.4
Goodenough, J.B.5
Shao-Horn, Y.6
-
50
-
-
84864693605
-
Supportless silver nanowires as oxygen reduction reaction catalysts for hydroxide-exchange membrane fuel cells
-
Alia SM, Duong K, Liu T, Jensen K, Yan YS. 2012. Supportless silver nanowires as oxygen reduction reaction catalysts for hydroxide-exchange membrane fuel cells. ChemSusChem 5:1619-24
-
(2012)
Chem Sus Chem
, vol.5
, pp. 1619-1624
-
-
Alia, S.M.1
Duong, K.2
Liu, T.3
Jensen, K.4
Yan, Y.S.5
-
51
-
-
1542274580
-
Long term investigations of silver cathodes for alkaline fuel cells
-
Wagner N, Schulze M, G̈ ulzow E. 2004. Long term investigations of silver cathodes for alkaline fuel cells. J. Power Sources 127:264-72
-
(2004)
J. Power Sources
, vol.127
, pp. 264-272
-
-
Wagner, N.1
Schulze, M.2
G̈ulzow, E.3
-
52
-
-
79959353446
-
Electrochemical and fuel cell evaluation of Co based catalyst for oxygen reduction in anion exchange polymer membrane fuel cells
-
Mamlouk M, Kumar SMS, Gouerec P, Scott K. 2011. Electrochemical and fuel cell evaluation of Co based catalyst for oxygen reduction in anion exchange polymer membrane fuel cells. J. Power Sources 196:7594-600
-
(2011)
J. Power Sources
, vol.196
, pp. 7594-7600
-
-
Mamlouk, M.1
Kumar, S.M.S.2
Gouerec, P.3
Scott, K.4
-
53
-
-
79953886290
-
Characterization and application of anion exchange polymer membranes with non-platinum group metals for fuel cells
-
Mamlouk M, Wang X, ScottK,Horsfall JA, WilliamsC. 2011. Characterization and application of anion exchange polymer membranes with non-platinum group metals for fuel cells. Proc. Inst. Mech. Eng. A J. Power Energy 225:152-60
-
(2011)
Proc. Inst. Mech. Eng. A J. Power Energy
, vol.225
, pp. 152-160
-
-
Mamlouk, M.1
Wang, X.2
Scott, K.3
Horsfall, J.A.4
Williams, C.5
-
54
-
-
62649121385
-
Cell performance of Pd-Sn catalyst in passive direct methanol alkaline fuel cell using anion exchange membrane
-
Kim J,Momma T, Osaka T. 2009. Cell performance of Pd-Sn catalyst in passive direct methanol alkaline fuel cell using anion exchange membrane. J. Power Sources 189:999-1002
-
(2009)
J. Power Sources
, vol.189
, pp. 999-1002
-
-
Kim, J.1
Momma, T.2
Osaka, T.3
-
55
-
-
69949125927
-
Carbon-supported Co1.67Te2 nanoparticles as electrocatalysts for oxygen reduction reaction in alkaline electrolyte
-
Wu G, Cui GF, Li DY, Shen PK, Li N. 2009. Carbon-supported Co1.67Te2 nanoparticles as electrocatalysts for oxygen reduction reaction in alkaline electrolyte. J. Mater. Chem. 19:6581-89
-
(2009)
J. Mater. Chem.
, vol.19
, pp. 6581-6589
-
-
Wu, G.1
Cui, G.F.2
Li, D.Y.3
Shen, P.K.4
Li, N.5
-
56
-
-
77953132948
-
H-2/air alkaline membrane fuel cell performance and durability, using novel ionomer and non-platinum group metal cathode catalyst
-
Piana M, Boccia M, Filpi A, Flammia E, Miller HA, et al. 2010. H-2/air alkaline membrane fuel cell performance and durability, using novel ionomer and non-platinum group metal cathode catalyst. J. Power Sources 195:5875-81
-
(2010)
J. Power Sources
, vol.195
, pp. 5875-5881
-
-
Piana, M.1
Boccia, M.2
Filpi, A.3
Flammia, E.4
Miller, H.A.5
-
57
-
-
63149121723
-
Anion exchange membrane and ionomer for alkaline membrane fuel cells (AEMFCs)
-
Yanagi H, Fukuta K. 2008. Anion exchange membrane and ionomer for alkaline membrane fuel cells (AEMFCs). ECS Trans. 16:257-62
-
(2008)
ECS Trans.
, vol.16
, pp. 257-262
-
-
Yanagi, H.1
Fukuta, K.2
-
58
-
-
78149459172
-
Self-crosslinked alkaline polymer electrolyte exceptionally stable at 90C
-
Pan J, Li Y, Zhuang L, Lu JT. 2010. Self-crosslinked alkaline polymer electrolyte exceptionally stable at 90C. Chem. Commun. 46:8597-99
-
(2010)
Chem. Commun.
, vol.46
, pp. 8597-8599
-
-
Pan, J.1
Li, Y.2
Zhuang, L.3
Lu, J.T.4
-
59
-
-
0034240591
-
Relation of energies and coverages of underpotential and overpotential deposited H at Pt and other metals to the 'volcano curve' for cathodic H2 evolution kinetics
-
Conway BE, Jerkiewicz G. 2000. Relation of energies and coverages of underpotential and overpotential deposited H at Pt and other metals to the 'volcano curve' for cathodic H2 evolution kinetics. Electrochim. Acta 45:4075-83
-
(2000)
Electrochim. Acta
, vol.45
, pp. 4075-4083
-
-
Conway, B.E.1
Jerkiewicz, G.2
-
60
-
-
84878092949
-
Correlating the hydrogen evolution reaction activity in alkaline electrolytes with the hydrogen binding energy on monometallic surfaces
-
Sheng WC, Myint M, Chen JGG, Yan YS. 2013. Correlating the hydrogen evolution reaction activity in alkaline electrolytes with the hydrogen binding energy on monometallic surfaces. Energy Environ. Sci. 6:1509-12
-
(2013)
Energy Environ. Sci.
, vol.6
, pp. 1509-1512
-
-
Sheng, W.C.1
Myint, M.2
Chen, J.G.G.3
Yan, Y.S.4
-
61
-
-
77957692480
-
Hydrogen oxidation and evolution reaction kinetics on platinum: Acid versus alkaline electrolytes
-
Sheng WC, Gasteiger HA, Shao-Horn Y. 2010. Hydrogen oxidation and evolution reaction kinetics on platinum: acid versus alkaline electrolytes. J. Electrochem. Soc. 157:B1529-B36
-
(2010)
J. Electrochem. Soc.
, vol.157
-
-
Sheng, W.C.1
Gasteiger, H.A.2
Shao-Horn, Y.3
-
62
-
-
0032050091
-
Specificity of the kinetics of H2 evolution to the structure of single-crystal Pt surfaces, and the relation between OPD and UPD H
-
Barber J, Morin S, Conway BE. 1998. Specificity of the kinetics of H2 evolution to the structure of single-crystal Pt surfaces, and the relation between OPD and UPD H. J. Electroanal. Chem. 446:125-38
-
(1998)
J. Electroanal. Chem.
, vol.446
, pp. 125-138
-
-
Barber, J.1
Morin, S.2
Conway, B.E.3
-
63
-
-
0039033810
-
Determination of adsorption of OPD H species in the cathodic hydrogen evolution reaction at Pt in relation to electrocatalysis
-
Conway BE, Bai L. 1986. Determination of adsorption of OPD H species in the cathodic hydrogen evolution reaction at Pt in relation to electrocatalysis. J. Electroanal. Chem. 198:149-75
-
(1986)
J. Electroanal. Chem.
, vol.198
, pp. 149-175
-
-
Conway, B.E.1
Bai, L.2
-
64
-
-
84884181927
-
Platinum-coated copper nanowires with high activity for hydrogen oxidation reaction in base
-
Alia SM, Pivovar BS, Yan Y. 2013. Platinum-coated copper nanowires with high activity for hydrogen oxidation reaction in base. J. Am. Chem. Soc. 135:13473-78
-
(2013)
J. Am. Chem. Soc.
, vol.135
, pp. 13473-13478
-
-
Alia, S.M.1
Pivovar, B.S.2
Yan, Y.3
-
65
-
-
84875443259
-
Improving the hydrogen oxidation reaction rate by promotion of hydroxyl adsorption
-
Strmcnik D, Uchimura M, Wang C, Subbaraman R, Danilovic N, et al. Improving the hydrogen oxidation reaction rate by promotion of hydroxyl adsorption. Nat. Chem. 5:300-6
-
Nat. Chem.
, vol.5
, pp. 300-306
-
-
Strmcnik, D.1
Uchimura, M.2
Wang, C.3
Subbaraman, R.4
Danilovic, N.5
-
66
-
-
0028460443
-
The hydrogen evolution reaction on nickel surfaces stabilized by Habsorption
-
Machado SAS, Avaca LA. 1994. The hydrogen evolution reaction on nickel surfaces stabilized by Habsorption. Electrochim. Acta 39:1385-91
-
(1994)
Electrochim. Acta
, vol.39
, pp. 1385-1391
-
-
MacHado, S.A.S.1
Avaca, L.A.2
-
67
-
-
15744396507
-
Trends in the exchange current for hydrogen evolution
-
Norskov JK, Bligaard T, Logadottir A, Kitchin JR, Chen JG, et al. 2005. Trends in the exchange current for hydrogen evolution. J. Electrochem. Soc. 152:J23-J26
-
(2005)
J. Electrochem. Soc.
, vol.152
-
-
Norskov, J.K.1
Bligaard, T.2
Logadottir, A.3
Kitchin, J.R.4
Chen, J.G.5
-
69
-
-
38149008141
-
Development of cathode architectures customized for H2/O2 metal-cation-free alkaline membrane fuel
-
Tamain C, Poynton SA, Slade RCT, Carroll B, Varcoe JR. 2007. Development of cathode architectures customized for H2/O2 metal-cation-free alkaline membrane fuel. J. Phys. Chem. C 111:18423-30
-
(2007)
J. Phys. Chem. C
, vol.111
, pp. 18423-18430
-
-
Tamain, C.1
Poynton, S.A.2
Slade, R.C.T.3
Carroll, B.4
Varcoe, J.R.5
-
70
-
-
78449308548
-
Dye-sensitized solar cells
-
Hagfeldt A, Boschloo G, Sun LC, Kloo L, Pettersson H. 2010. Dye-sensitized solar cells. Chem. Rev. 110:6595-663
-
(2010)
Chem. Rev.
, vol.110
, pp. 6595-6663
-
-
Hagfeldt, A.1
Boschloo, G.2
Sun, L.C.3
Kloo, L.4
Pettersson, H.5
-
71
-
-
78449291717
-
Semiconductor quantum dots and quantum dot arrays and applications of multiple exciton generation to third-generation photovoltaic solar cells
-
Nozik AJ, BeardMC, Luther JM, LawM, Ellingson RJ, Johnson JC. 2010. Semiconductor quantum dots and quantum dot arrays and applications of multiple exciton generation to third-generation photovoltaic solar cells. Chem. Rev. 110:6873-90
-
(2010)
Chem. Rev.
, vol.110
, pp. 6873-6890
-
-
Nozik, A.J.1
Beard, M.C.2
Luther, J.M.3
Law, M.4
Ellingson, R.J.5
Johnson, J.C.6
-
73
-
-
0032593267
-
Crystalline Si thin-film solar cells: A review
-
Bergmann RB. 1999. Crystalline Si thin-film solar cells: a review. App. Phys. A. 69:187-94
-
(1999)
App. Phys. A.
, vol.69
, pp. 187-194
-
-
Bergmann, R.B.1
-
74
-
-
34250888105
-
Evaluating the limits of solar photovoltaics (PV) in electric power systems utilizing energy storage and other enabling technologies
-
Denholm P, Margolis RM. 2007. Evaluating the limits of solar photovoltaics (PV) in electric power systems utilizing energy storage and other enabling technologies. Energy Policy 35:4424-33
-
(2007)
Energy Policy
, vol.35
, pp. 4424-4433
-
-
Denholm, P.1
Margolis, R.M.2
-
75
-
-
33847728551
-
Evaluating the limits of solar photovoltaics (PV) in traditional electric power systems
-
Denholm P, Margolis RM. 2007. Evaluating the limits of solar photovoltaics (PV) in traditional electric power systems. Energy Policy 35:2852-61
-
(2007)
Energy Policy
, vol.35
, pp. 2852-2861
-
-
Denholm, P.1
Margolis, R.M.2
-
77
-
-
78449289476
-
Solar water splitting cells
-
Walter MG, Warren EL, McKone JR, Boettcher SW, Mi QX, et al. 2010. Solar water splitting cells. Chem. Rev. 110:6446-73
-
(2010)
Chem. Rev.
, vol.110
, pp. 6446-6473
-
-
Walter, M.G.1
Warren, E.L.2
McKone, J.R.3
Boettcher, S.W.4
Mi, Q.X.5
-
78
-
-
35348875044
-
Electrochemical photolysis of water at a semiconductor electrode
-
Fujishima A, Honda K. 1972. Electrochemical photolysis of water at a semiconductor electrode. Nature 238:37-38
-
(1972)
Nature
, vol.238
, pp. 37-38
-
-
Fujishima, A.1
Honda, K.2
-
79
-
-
33645027408
-
Photocatalyst releasing hydrogen from water-enhancing catalytic performance holds promise for hydrogen production by water splitting in sunlight
-
Maeda K, Teramura K, Lu DL, Takata T, Saito N, et al. 2006. Photocatalyst releasing hydrogen from water-enhancing catalytic performance holds promise for hydrogen production by water splitting in sunlight. Nature 440:295
-
(2006)
Nature
, vol.440
, pp. 295
-
-
Maeda, K.1
Teramura, K.2
Lu, D.L.3
Takata, T.4
Saito, N.5
-
80
-
-
77956838396
-
Photocatalytic water splitting: Recent progress and future challenges
-
Maeda K, Domen K. 2010. Photocatalytic water splitting: recent progress and future challenges. J. Phys. Chem. Lett. 1:2655-61
-
(2010)
J. Phys. Chem. Lett.
, vol.1
, pp. 2655-2661
-
-
Maeda, K.1
Domen, K.2
-
81
-
-
77952567707
-
Efficient nonsacrificial water splitting through twostep photoexcitation by visible light using a modified oxynitride as a hydrogen evolution photocatalyst
-
MaedaK,HigashiM,LuDL,Abe R,DomenK. 2010. Efficient nonsacrificial water splitting through twostep photoexcitation by visible light using a modified oxynitride as a hydrogen evolution photocatalyst. J. Am. Chem. Soc. 132:5858-68
-
(2010)
J. Am. Chem. Soc.
, vol.132
, pp. 5858-5868
-
-
Maeda, K.1
Higashi, M.2
Lu, D.L.3
Abe, R.4
Domen, K.5
-
82
-
-
84877146843
-
Recent progress in the development of (oxy)nitride photocatalysts for water splitting under visible-light irradiation
-
Moriya Y, Takata T, Domen K. 2013. Recent progress in the development of (oxy)nitride photocatalysts for water splitting under visible-light irradiation. Coord. Chem. Rev. 257:1957-69
-
(2013)
Coord. Chem. Rev.
, vol.257
, pp. 1957-1969
-
-
Moriya, Y.1
Takata, T.2
Domen, K.3
-
83
-
-
82055161674
-
Plasmonic-metal nanostructures for efficient conversion of solar to chemical energy
-
Linic S, Christopher P, Ingram DB. 2011. Plasmonic-metal nanostructures for efficient conversion of solar to chemical energy. Nat. Mater. 10:911-21
-
(2011)
Nat. Mater.
, vol.10
, pp. 911-921
-
-
Linic, S.1
Christopher, P.2
Ingram, D.B.3
-
84
-
-
79955696615
-
Electrical conductivity, ionic conductivity, optical absorption, and gas separation properties of ionically conductive polymer membranes embedded with Si microwire arrays
-
Spurgeon JM, Walter MG, Zhou JF, Kohl PA, Lewis NS. 2011. Electrical conductivity, ionic conductivity, optical absorption, and gas separation properties of ionically conductive polymer membranes embedded with Si microwire arrays. Energy Environ. Sci. 4:1772-80
-
(2011)
Energy Environ. Sci.
, vol.4
, pp. 1772-1780
-
-
Spurgeon, J.M.1
Walter, M.G.2
Zhou, J.F.3
Kohl, P.A.4
Lewis, N.S.5
-
85
-
-
79960990390
-
Proton exchange membrane electrolysis sustained by water vapor
-
Spurgeon JM, Lewis NS. 2011. Proton exchange membrane electrolysis sustained by water vapor. Energy Environ. Sci. 4:2993-98
-
(2011)
Energy Environ. Sci.
, vol.4
, pp. 2993-2998
-
-
Spurgeon, J.M.1
Lewis, N.S.2
-
86
-
-
0008434334
-
Definition of the intrinsic rate of photocatalytic cleavage of water over Pt-RuO2/TiO2 catalysts
-
Karakitsou K, Verykios XE. 1995. Definition of the intrinsic rate of photocatalytic cleavage of water over Pt-RuO2/TiO2 catalysts. J. Catal. 152:360-67
-
(1995)
J. Catal.
, vol.152
, pp. 360-367
-
-
Karakitsou, K.1
Verykios, X.E.2
-
87
-
-
79955898882
-
Electrochemical energy storage for green grid
-
Yang ZG, Zhang JL, Kintner-Meyer MCW, Lu XC, Choi DW, et al. 2011. Electrochemical energy storage for green grid. Chem. Rev. 111:3577-613
-
(2011)
Chem. Rev.
, vol.111
, pp. 3577-3613
-
-
Yang, Z.G.1
Zhang, J.L.2
Kintner-Meyer, M.C.W.3
Lu, X.C.4
Choi, D.W.5
-
88
-
-
0015995010
-
Electrically rechargeable redox flow cells
-
New York: Am. Soc. Mech. Eng
-
Thaller LH. 1974. Electrically rechargeable redox flow cells. Proc. 9th Intersoc. Energy Convers. Eng. Conf. Proc., pp. 924-28. New York: Am. Soc. Mech. Eng.
-
(1974)
Proc. 9th Intersoc. Energy Convers. Eng. Conf. Proc
, pp. 924-928
-
-
Thaller, L.H.1
-
89
-
-
83155172384
-
Redox flow batteries: A review
-
Weber AZ, Mench MM, Meyers JP, Ross PN, Gostick JT, Liu QH. 2011. Redox flow batteries: a review. J. Appl. Electrochem. 41:1137-64
-
(2011)
J. Appl. Electrochem.
, vol.41
, pp. 1137-1164
-
-
Weber, A.Z.1
Mench, M.M.2
Meyers, J.P.3
Ross, P.N.4
Gostick, J.T.5
Liu, Q.H.6
-
90
-
-
80051711182
-
Progress in flow battery research and development
-
Skyllas-Kazacos M, Chakrabarti MH, Hajimolana SA, Mjalli FS, Saleem M. 2011. Progress in flow battery research and development. J. Electrochem. Soc. 158:R55-R79
-
(2011)
J. Electrochem. Soc.
, vol.158
-
-
Skyllas-Kazacos, M.1
Chakrabarti, M.H.2
Hajimolana, S.A.3
Mjalli, F.S.4
Saleem, M.5
-
91
-
-
84873404690
-
Recent progress in redox flow battery research and development
-
Wang W, Luo QT, Li B,Wei XL, Li LY, Yang ZG. 2013. Recent progress in redox flow battery research and development. Adv. Funct. Mater. 23:970-86
-
(2013)
Adv. Funct. Mater.
, vol.23
, pp. 970-986
-
-
Wang, W.1
Luo, Q.T.2
Li, B.3
Wei, X.L.4
Li, L.Y.5
Yang, Z.G.6
-
92
-
-
84867390232
-
Progress in redox flow batteries, remaining challenges and their applications in energy storage
-
Leung P, Li XH, de Leon CP, Berlouis L, Low CTJ, Walsh FC. 2012. Progress in redox flow batteries, remaining challenges and their applications in energy storage. RSC Adv. 2:10125-56
-
(2012)
RSC Adv.
, vol.2
, pp. 10125-10156
-
-
Leung, P.1
Li, X.H.2
De Leon, C.P.3
Berlouis, L.4
Low, C.T.J.5
Walsh, F.C.6
-
95
-
-
0019399401
-
Investigation of factors affecting performance of the iron-redox battery
-
Hruska LW, Savinell RF. 1981. Investigation of factors affecting performance of the iron-redox battery. J. Electrochem. Soc. 128:18-25
-
(1981)
J. Electrochem. Soc.
, vol.128
, pp. 18-25
-
-
Hruska, L.W.1
Savinell, R.F.2
-
96
-
-
0022715928
-
New all-vanadium redox flow cell
-
Skyllas-Kazacos M, Rychcik M, Robins RG, Fane AG, Green MA. 1986. New all-vanadium redox flow cell. J. Electrochem. Soc. 133:1057-58
-
(1986)
J. Electrochem. Soc.
, vol.133
, pp. 1057-1058
-
-
Skyllas-Kazacos, M.1
Rychcik, M.2
Robins, R.G.3
Fane, A.G.4
Green, M.A.5
-
97
-
-
18344373681
-
Electron-transfer kinetics of Np3+/Np4+, NpO2 +/NpO2 2+, V2+/V3+, and VO2+/VO2 + at carbon electrodes
-
Yamamura T, Watanabe N, Yano T, Shiokawa Y. 2005. Electron-transfer kinetics of Np3+/Np4+, NpO2 +/NpO2 2+, V2+/V3+, and VO2+/VO2 + at carbon electrodes. J. Electrochem. Soc. 152:A830-36
-
(2005)
J. Electrochem. Soc.
, vol.152
-
-
Yamamura, T.1
Watanabe, N.2
Yano, T.3
Shiokawa, Y.4
-
98
-
-
2442557960
-
A novel flow battery: A lead acid battery based on an electrolyte with soluble lead(II). Part I. Preliminary studies
-
Hazza A, Pletcher D, Wills R. 2004. A novel flow battery: a lead acid battery based on an electrolyte with soluble lead(II). Part I. Preliminary studies. Phys. Chem. Chem. Phys. 6:1773-78
-
(2004)
Phys. Chem. Chem. Phys.
, vol.6
, pp. 1773-1778
-
-
Hazza, A.1
Pletcher, D.2
Wills, R.3
-
101
-
-
84902496498
-
Amultiple ion-exchange membrane design for redox flow batteries
-
In press. doi: 10.1039/C4EE00165F
-
Gu S, Gong K, Yan EZ, Yan Y. 2014. Amultiple ion-exchange membrane design for redox flow batteries. Energy Environ. Sci. In press. doi: 10.1039/C4EE00165F
-
(2014)
Energy Environ. Sci.
-
-
Gu, S.1
Gong, K.2
Yan, E.Z.3
Yan, Y.4
-
102
-
-
80054739001
-
Membrane development for vanadium redox flow batteries
-
Schwenzer B, Zhang JL, Kim S, Li LY, Liu J, Yang ZG. 2011. Membrane development for vanadium redox flow batteries. Chem Sus Chem 4:1388-406
-
(2011)
Chem Sus Chem
, vol.4
, pp. 1388-1406
-
-
Schwenzer, B.1
Zhang, J.L.2
Kim, S.3
Li, L.Y.4
Liu, J.5
Yang, Z.G.6
-
103
-
-
79953653324
-
Ion exchange membranes for vanadium redox flow battery (VRB) applications
-
Li XF, Zhang HM, Mai ZS, Zhang HZ, Vankelecom I. 2011. Ion exchange membranes for vanadium redox flow battery (VRB) applications. Energy Environ. Sci. 4:1147-60
-
(2011)
Energy Environ. Sci.
, vol.4
, pp. 1147-1160
-
-
Li, X.F.1
Zhang, H.M.2
Mai, Z.S.3
Zhang, H.Z.4
Vankelecom, I.5
|