-
1
-
-
0033077324
-
The space complexity of approximating the frequency moments
-
N. Alon, Y. Matias, and M. Szegedy. The Space Complexity of Approximating the Frequency Moments. J. Comput. Syst. Sci., 58(1):137-147, 1999.
-
(1999)
J. Comput. Syst. Sci.
, vol.58
, Issue.1
, pp. 137-147
-
-
Alon, N.1
Matias, Y.2
Szegedy, M.3
-
3
-
-
84862604924
-
Streaming algorithms from precision sampling
-
A. Andoni, R. Krauthgamer, and K. Onak. Streaming algorithms from precision sampling. In FOCS, pages 363-372. 2011.
-
(2011)
FOCS
, pp. 363-372
-
-
Andoni, A.1
Krauthgamer, R.2
Onak, K.3
-
4
-
-
84876050144
-
Eigenvalues of a matrix in the streaming model
-
A. Andoni and H. L. Nguyen. Eigenvalues of a matrix in the streaming model. In SODA, 2013.
-
(2013)
SODA
-
-
Andoni, A.1
Nguyen, H.L.2
-
6
-
-
3042569519
-
An information statistics approach to data stream and communication complexity
-
Z. Bar-Yossef, T. S. Jayram, R. Kumar, and D. Sivakumar. An information statistics approach to data stream and communication complexity. J. Comput. Syst. Sci, 68(4):702-732, 2004.
-
(2004)
J. Comput. Syst. Sci
, vol.68
, Issue.4
, pp. 702-732
-
-
Bar-Yossef, Z.1
Jayram, T.S.2
Kumar, R.3
Sivakumar, D.4
-
7
-
-
33244485313
-
Simpler algorithm for estimating frequency moments of data streams
-
L. Bhuvanagiri, S. Ganguly, D. Kesh, and C. Saha. Simpler algorithm for estimating frequency moments of data streams. In SODA, pages 708-713, 2006.
-
(2006)
SODA
, pp. 708-713
-
-
Bhuvanagiri, L.1
Ganguly, S.2
Kesh, D.3
Saha, C.4
-
8
-
-
84863765049
-
Exact matrix completion via convex optimization
-
E. J. Candes and B. Recht. Exact matrix completion via convex optimization. Commun. ACM, 55(6):111- 119, 2012.
-
(2012)
Commun. ACM
, vol.55
, Issue.6
, pp. 111-119
-
-
Candes, E.J.1
Recht, B.2
-
9
-
-
0041513338
-
Near-optimal lower bounds on the multi-party communication complexity of set disjointness
-
A. Chakrabarti, S. Khot, and X. Sun. Near-optimal lower bounds on the multi-party communication complexity of set disjointness. In CCC, 2003.
-
(2003)
CCC
-
-
Chakrabarti, A.1
Khot, S.2
Sun, X.3
-
10
-
-
84869158135
-
Finding frequent items in data streams
-
M. Charikar, K. Chen, and M. Farach-Colton. Finding frequent items in data streams. In Proceedings of the 29th International Colloquium on Automata, Languages and Programming (ICALP), pages 693-703, 2002.
-
(2002)
Proceedings of the 29th International Colloquium on Automata, Languages and Programming (ICALP)
, pp. 693-703
-
-
Charikar, M.1
Chen, K.2
Farach-Colton, M.3
-
11
-
-
84863299639
-
Graph connectivities, network coding, and expander graphs
-
H. Y. Cheung, L. C. Lau, and K. M. Leung. Graph connectivities, network coding, and expander graphs. In FOCS, pages 190-199, 2011.
-
(2011)
FOCS
, pp. 190-199
-
-
Cheung, H.Y.1
Lau, L.C.2
Leung, K.M.3
-
12
-
-
84879805132
-
Low rank approximation and regression in input sparsity time
-
K. L. Clarkson and D. P. Woodruff. Low rank approximation and regression in input sparsity time. In STOC, pages 81-90, 2013.
-
(2013)
STOC
, pp. 81-90
-
-
Clarkson, K.L.1
Woodruff, D.P.2
-
13
-
-
14844367057
-
An improved data stream summary: The count-min sketch and its applications
-
G. Cormode and S. Muthukrishnan. An improved data stream summary: The count-min sketch and its applications. J. Algorithms, 55(1):58-75, 2005.
-
(2005)
J. Algorithms
, vol.55
, Issue.1
, pp. 58-75
-
-
Cormode, G.1
Muthukrishnan, S.2
-
14
-
-
80052387398
-
Periodicity and cyclic shifts via linear sketches
-
M. S. Crouch and A. McGregor. Periodicity and cyclic shifts via linear sketches. In APPROX-RANDOM, pages 158-170, 2011.
-
(2011)
APPROX-RANDOM
, pp. 158-170
-
-
Crouch, M.S.1
McGregor, A.2
-
15
-
-
79955735616
-
Algorithms and hardness for subspace approximation
-
A. Deshpande, M. Tulsiani, and N. K. Vishnoi. Algorithms and hardness for subspace approximation. In SODA, pages 482-496, 2011.
-
(2011)
SODA
, pp. 482-496
-
-
Deshpande, A.1
Tulsiani, M.2
Vishnoi, N.K.3
-
17
-
-
0020828424
-
Probabilistic counting algorithms for data base applications
-
P. Flajolet and G. N. Martin. Probabilistic counting algorithms for data base applications. J. Comput. Syst. Sci., 31(2):182-209, 1985.
-
(1985)
J. Comput. Syst. Sci.
, vol.31
, Issue.2
, pp. 182-209
-
-
Flajolet, P.1
Martin, G.N.2
-
18
-
-
33746595332
-
Rate of convergence in probability to the marchenko-pastur law
-
F. Gotze and A. Tikhomirov. Rate of convergence in probability to the marchenko-pastur law. Bernoulli, 10(3):pp. 503-548, 2004.
-
(2004)
Bernoulli
, vol.10
, Issue.3
, pp. 503-548
-
-
Gotze, F.1
Tikhomirov, A.2
-
19
-
-
84897581392
-
Sketching information divergences
-
S. Guha, P. Indyk, and A. McGregor. Sketching information divergences. Machine Learning, 72(1-2):5- 19, 2008.
-
(2008)
Machine Learning
, vol.72
, Issue.1-2
, pp. 5-19
-
-
Guha, S.1
Indyk, P.2
McGregor, A.3
-
21
-
-
33746851190
-
Stable distributions, pseudorandom generators, embeddings, and data stream computation
-
P. Indyk. Stable distributions, pseudorandom generators, embeddings, and data stream computation. J. ACM, 53(3):307-323, 2006.
-
(2006)
J. ACM
, vol.53
, Issue.3
, pp. 307-323
-
-
Indyk, P.1
-
23
-
-
58449100249
-
Declaring independence via the sketching of sketches
-
P. Indyk and A. McGregor. Declaring independence via the sketching of sketches. In SODA, pages 737- 745, 2008.
-
(2008)
SODA
, pp. 737-745
-
-
Indyk, P.1
McGregor, A.2
-
24
-
-
33244491819
-
Optimal approximations of the frequency moments of data streams
-
P. Indyk and D. P. Woodruff. Optimal approximations of the frequency moments of data streams. In STOC, pages 202-208, 2005.
-
(2005)
STOC
, pp. 202-208
-
-
Indyk, P.1
Woodruff, D.P.2
-
26
-
-
33750157608
-
How many entries of a typical orthogonal matrix can be approximated by independent normals?
-
T. Jiang. How many entries of a typical orthogonal matrix can be approximated by independent normals? The Annals of Probability, 34(4):pp. 1497-1529, 2006.
-
(2006)
The Annals of Probability
, vol.34
, Issue.4
, pp. 1497-1529
-
-
Jiang, T.1
-
28
-
-
79959741836
-
Fast moment estimation in data streams in optimal space
-
M. Kane, J. Nelson, E. Porat, and D. P. Woodruff. Fast moment estimation in data streams in optimal space. In Proceedings of the 43rd annual ACM symposium on Theory of computing, STOC '11, pages 745- 754, 2011.
-
(2011)
Proceedings of the 43rd Annual ACM Symposium on Theory of Computing, STOC '11
, pp. 745-754
-
-
Kane, M.1
Nelson, J.2
Porat, E.3
Woodruff, D.P.4
-
29
-
-
0038416696
-
Property testing of data dimensionality
-
R. Krauthgamer and O. Sasson. Property testing of data dimensionality. In SODA, pages 18-27, 2003.
-
(2003)
SODA
, pp. 18-27
-
-
Krauthgamer, R.1
Sasson, O.2
-
30
-
-
33947544423
-
Estimates of moments and tails of gaussian chaoses
-
R. Latala. Estimates of moments and tails of Gaussian chaoses. Ann. Probab., 34(6):2315-2331, 2006.
-
(2006)
Ann. Probab.
, vol.34
, Issue.6
, pp. 2315-2331
-
-
Latala, R.1
-
31
-
-
0034287154
-
Adaptive estimation of a quadratic functional by model selection
-
B.Laurent and P. Massart. Adaptive estimation of a quadratic functional by model selection. Annals of Statistics, 28(5): 1302-1338, 2000.
-
(2000)
Annals of Statistics
, vol.28
, Issue.5
, pp. 1302-1338
-
-
Laurent, B.1
Massart, P.2
-
32
-
-
78049451271
-
Moments of the gaussian chaos
-
volume 2006 of Lecture Notes in Math., Springer, Berlin
-
J. Lehec. Moments of the Gaussian chaos. In Seminaire de Probabilites XLIII, volume 2006 of Lecture Notes in Math., pages 327-340. Springer, Berlin, 2011.
-
(2011)
Seminaire de Probabilites XLIII
, pp. 327-340
-
-
Lehec, J.1
-
33
-
-
84877742369
-
Measuring the achievable error of query sets under differential privacy
-
abs/1202.3399
-
C. Li and G. Miklau. Measuring the achievable error of query sets under differential privacy. CoRR, abs/1202.3399, 2012.
-
(2012)
CoRR
-
-
Li, C.1
Miklau, G.2
-
34
-
-
84902091597
-
A tight lower bound for high frequency moment estimation with small error
-
Y. Li and D. P. Woodruff. A tight lower bound for high frequency moment estimation with small error. In RANDOM, 2013.
-
(2013)
RANDOM
-
-
Li, Y.1
Woodruff, D.P.2
-
36
-
-
0000263239
-
Distribution of eigenvalues in certain sets of random matrices
-
V. A. Marcenko and L. A. Pastur. Distribution of eigenvalues in certain sets of random matrices. Mat. Sb. (N.S.), 72 (114):507-536, 1967.
-
(1967)
Mat. Sb. (N.S.)
, vol.72
, Issue.114
, pp. 507-536
-
-
Marcenko, V.A.1
Pastur, L.A.2
-
37
-
-
84879805212
-
Low-distortion sub- space embeddings in input-sparsity time and applications to robust linear regression
-
X. Meng and M. W. Mahoney. Low-distortion sub- space embeddings in input-sparsity time and applications to robust linear regression. In STOC, pages 91- 100, 2013.
-
(2013)
STOC
, pp. 91-100
-
-
Meng, X.1
Mahoney, M.W.2
-
39
-
-
84893502222
-
OSNAP: Faster numerical linear algebra algorithms via sparser subspace embeddings
-
abs/1211.1002
-
J. Nelson and H. L. Nguyen. OSNAP: Faster numerical linear algebra algorithms via sparser subspace embeddings. CoRR, abs/1211.1002, 2012.
-
(2012)
CoRR
-
-
Nelson, J.1
Nguyen, H.L.2
-
40
-
-
84867563798
-
Applications of the shannon-hartley theorem to data streams and sparse recovery
-
E.Price and D. P. Woodruff. Applications of the Shannon-Hartley theorem to data streams and sparse recovery. In ISIT, pages 2446-2450, 2012.
-
(2012)
ISIT
, pp. 2446-2450
-
-
Price, E.1
Woodruff, D.P.2
-
42
-
-
41049114969
-
The littlewood- offord problem and invertibility of random matrices
-
M. Rudelson and R. Vershynin. The Littlewood- Offord problem and invertibility of random matrices. Advances in Mathematics, 218(2):600 - 633, 2008.
-
(2008)
Advances in Mathematics
, vol.218
, Issue.2
, pp. 600-633
-
-
Rudelson, M.1
Vershynin, R.2
-
43
-
-
0036038680
-
Space lower bounds for distance approximation in the data stream model
-
M. E. Saks and X. Sun. Space lower bounds for distance approximation in the data stream model. In STOC, pages 360-369, 2002.
-
(2002)
STOC
, pp. 360-369
-
-
Saks, M.E.1
Sun, X.2
-
44
-
-
35348901208
-
Improved approximation algorithms for large matrices via random projections
-
T. Sarlos. Improved approximation algorithms for large matrices via random projections. In FOCS, pages 143-152, 2006.
-
(2006)
FOCS
, pp. 143-152
-
-
Sarlos, T.1
-
46
-
-
79952433487
-
Introduction to the non-asymptotic analysis of random matrices
-
Y. C. Eldar and G. Kutyniok, editors, tions. Cambridge University Press
-
R. Vershynin. Introduction to the non-asymptotic analysis of random matrices. In Y. C. Eldar and G. Kutyniok, editors, Compressed Sensing: Theory and Applications. Cambridge University Press, 2011.
-
(2011)
Compressed Sensing: Theory and Applica
-
-
Vershynin, R.1
|