메뉴 건너뛰기




Volumn 46, Issue , 2014, Pages 83-97

A finite mixture model of vehicle-to-vehicle and day-to-day variability of traffic network travel times

Author keywords

Expectation Maximization algorithm; Finite mixture model; Gamma Gamma distribution; Travel time reliability; Travel time variability

Indexed keywords

IMAGE SEGMENTATION; MAXIMUM PRINCIPLE; METEOROLOGY; MIXTURES; PARAMETER ESTIMATION; PROBABILITY DISTRIBUTIONS; TRAVEL TIME; VEHICLE TO VEHICLE COMMUNICATIONS; VEHICLES; ACCIDENTS;

EID: 84901985314     PISSN: 0968090X     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.trc.2014.05.011     Document Type: Article
Times cited : (35)

References (31)
  • 2
    • 76949096170 scopus 로고    scopus 로고
    • On the approximation of the generalized-K distribution by a gamma distribution for modeling composite fading channels
    • Al-Ahmadi S., Yanikomeroglu H. On the approximation of the generalized-K distribution by a gamma distribution for modeling composite fading channels. IEEE Trans. Wireless Commun. 2010, 9:706-713. 10.1109/TWC.2010.02.081266.
    • (2010) IEEE Trans. Wireless Commun. , vol.9 , pp. 706-713
    • Al-Ahmadi, S.1    Yanikomeroglu, H.2
  • 3
    • 33746795389 scopus 로고    scopus 로고
    • New methodology for estimating reliability in transportation networks with degraded link capacities
    • Al-Deek H., Emam E.B. New methodology for estimating reliability in transportation networks with degraded link capacities. J. Intell. Transp. Syst. 2006, 10:117-129. 10.1080/15472450600793586.
    • (2006) J. Intell. Transp. Syst. , vol.10 , pp. 117-129
    • Al-Deek, H.1    Emam, E.B.2
  • 4
    • 0035414923 scopus 로고    scopus 로고
    • Mathematical model for the irradiance probability density function of a laser beam propagating through turbulent media
    • Al-Habash M.A., Andrews L.C., Phillips R.L. Mathematical model for the irradiance probability density function of a laser beam propagating through turbulent media. Opt. Eng. 2001, 40:1554-1562. 10.1117/1.1386641.
    • (2001) Opt. Eng. , vol.40 , pp. 1554-1562
    • Al-Habash, M.A.1    Andrews, L.C.2    Phillips, R.L.3
  • 5
    • 84902014596 scopus 로고    scopus 로고
    • Proceedings of the 84th Annual Meeting of the Transportation Research Board, Washington, D.C. Presented at the Transportation Research Board 84th Annual Meeting.
    • Arroyo, S., Kornhauser, A.L., 2005. Modeling travel time distributions on a road network. In: Proceedings of the 84th Annual Meeting of the Transportation Research Board, Washington, D.C. Presented at the Transportation Research Board 84th Annual Meeting.
    • (2005) Modeling travel time distributions on a road network
    • Arroyo, S.1    Kornhauser, A.L.2
  • 8
    • 4344589283 scopus 로고    scopus 로고
    • Regression through the origin
    • Eisenhauer J.G. Regression through the origin. Teach. Stat. 2003, 25:76-80. 10.1111/1467-9639.00136.
    • (2003) Teach. Stat. , vol.25 , pp. 76-80
    • Eisenhauer, J.G.1
  • 9
    • 85029859616 scopus 로고    scopus 로고
    • Proceedings of the European Transport Conference, Strasbourg, France.
    • Eliasson, J., 2006. Forecasting travel time variability. In: Proceedings of the European Transport Conference, Strasbourg, France.
    • (2006) Forecasting travel time variability
    • Eliasson, J.1
  • 11
    • 0035385912 scopus 로고    scopus 로고
    • Using McDaniel's model to represent non-Rayleigh reverberation
    • Gu M., Abraham D.A. Using McDaniel's model to represent non-Rayleigh reverberation. IEEE J. Oceanic Eng. 2001, 26:348-357. 10.1109/48.946509.
    • (2001) IEEE J. Oceanic Eng. , vol.26 , pp. 348-357
    • Gu, M.1    Abraham, D.A.2
  • 14
    • 76749165350 scopus 로고    scopus 로고
    • Bayesian mixture model for estimating freeway travel time distributions from small probe samples from multiple days
    • Jintanakul K., Chu L., Jayakrishnan R. Bayesian mixture model for estimating freeway travel time distributions from small probe samples from multiple days. Transp. Res. Rec.: J. Transp. Res. Board 2009, 2136:37-44. 10.3141/2136-05.
    • (2009) Transp. Res. Rec.: J. Transp. Res. Board , vol.2136 , pp. 37-44
    • Jintanakul, K.1    Chu, L.2    Jayakrishnan, R.3
  • 16
    • 84902014590 scopus 로고    scopus 로고
    • Proceedings of the 92nd Annual Meeting of the Transportation Research Board, Washington, D.C. Presented at the Transportation Research Board 92nd Annual Meeting, Washington, DC.
    • Kazagli, E., Koutsopoulos, H.N., 2013. Arterial travel time estimation from automatic number plate recognition data. In: Proceedings of the 92nd Annual Meeting of the Transportation Research Board, Washington, D.C. Presented at the Transportation Research Board 92nd Annual Meeting, Washington, DC.
    • (2013) Arterial travel time estimation from automatic number plate recognition data
    • Kazagli, E.1    Koutsopoulos, H.N.2
  • 18
    • 84897136476 scopus 로고    scopus 로고
    • Scenario-based approach to analysis of travel time reliability with traffic simulation models
    • Kim J., Mahmassani H., Vovsha P., Stogios Y., Dong J. Scenario-based approach to analysis of travel time reliability with traffic simulation models. Transp. Res. Rec.: J. Transp. Res. Board 2013, 2391:56-68. 10.3141/2391-06.
    • (2013) Transp. Res. Rec.: J. Transp. Res. Board , vol.2391 , pp. 56-68
    • Kim, J.1    Mahmassani, H.2    Vovsha, P.3    Stogios, Y.4    Dong, J.5
  • 19
    • 84902014592 scopus 로고    scopus 로고
    • Incorporating weather impacts in traffic estimation and prediction systems (No. FHWA-JPO-09-065). FHWA, US Department of Transportation.
    • Mahmassani, H.S., Dong, J., Kim, J., Chen, R.B., Park, B., 2009. Incorporating weather impacts in traffic estimation and prediction systems (No. FHWA-JPO-09-065). FHWA, US Department of Transportation.
    • (2009)
    • Mahmassani, H.S.1    Dong, J.2    Kim, J.3    Chen, R.B.4    Park, B.5
  • 20
    • 84897585115 scopus 로고    scopus 로고
    • Characterizing travel time variability in vehicular traffic networks: deriving a robust relation for reliability analysis
    • Mahmassani H.S., Hou T., Dong J. Characterizing travel time variability in vehicular traffic networks: deriving a robust relation for reliability analysis. Transp. Res. Rec.: J. Transp. Res. Board 2012, 2315:141-152. 10.3141/2315-15.
    • (2012) Transp. Res. Rec.: J. Transp. Res. Board , vol.2315 , pp. 141-152
    • Mahmassani, H.S.1    Hou, T.2    Dong, J.3
  • 21
    • 84894496108 scopus 로고    scopus 로고
    • Connecting networkwide travel time reliability and the network fundamental diagram of traffic flow
    • Mahmassani H.S., Hou T., Saberi M. Connecting networkwide travel time reliability and the network fundamental diagram of traffic flow. Transp. Res. Rec.: J. Transp. Res. Board 2013, 2391:80-91. 10.3141/2391-08.
    • (2013) Transp. Res. Rec.: J. Transp. Res. Board , vol.2391 , pp. 80-91
    • Mahmassani, H.S.1    Hou, T.2    Saberi, M.3
  • 22
    • 84902014593 scopus 로고    scopus 로고
    • Implementation and evaluation of weather responsive traffic estimation and prediction system (Final Report No. FHWA-JPO-12-055). FHWA, US Department of Transportation.
    • Mahmassani, H.S., Kim, J., Hou, T., Zockaie, A., Saberi, M., Jiang, L., Verbas, O., Cheng, S., Chen, Y., Hass, R., 2012b. Implementation and evaluation of weather responsive traffic estimation and prediction system (Final Report No. FHWA-JPO-12-055). FHWA, US Department of Transportation.
    • (2012)
    • Mahmassani, H.S.1    Kim, J.2    Hou, T.3    Zockaie, A.4    Saberi, M.5    Jiang, L.6    Verbas, O.7    Cheng, S.8    Chen, Y.9    Hass, R.10
  • 23
    • 84902014583 scopus 로고    scopus 로고
    • DYNASMART-P Version 1.6 User's Guide.
    • Mahmassani, H.S., Sbayti, H., 2009. DYNASMART-P Version 1.6 User's Guide.
    • (2009)
    • Mahmassani, H.S.1    Sbayti, H.2
  • 24
    • 84902014584 scopus 로고
    • Travel time variability of a group of car commuters in north london (Monograph No. Working Paper 277). University of Leeds.
    • May, A.D., Bonsall, P.W., Marler, N.W., 1989. Travel time variability of a group of car commuters in north london (Monograph No. Working Paper 277). University of Leeds.
    • (1989)
    • May, A.D.1    Bonsall, P.W.2    Marler, N.W.3
  • 25
    • 77955630545 scopus 로고    scopus 로고
    • Using GPS data to gain insight into public transport travel time variability
    • Mazloumi E., Currie G., Rose G. Using GPS data to gain insight into public transport travel time variability. J. Transp. Eng. 2010, 136:623-631. http://dx.doi.org/10.1061/(ASCE)TE.1943-5436.0000126.
    • (2010) J. Transp. Eng. , vol.136 , pp. 623-631
    • Mazloumi, E.1    Currie, G.2    Rose, G.3
  • 26
    • 84902014585 scopus 로고    scopus 로고
    • Travel time variability, definition and valuation. DTU Transport, Kopenhagen, Denmark.
    • Mogens Fosgerau, Katrine Hjorth, Camilla Brems, Daisuke Fukuda, 2008. Travel time variability, definition and valuation. DTU Transport, Kopenhagen, Denmark.
    • (2008)
    • Fosgerau, M.1    Hjorth, K.2    Brems, C.3    Fukuda, D.4
  • 27
    • 0036140881 scopus 로고    scopus 로고
    • Travel time variability: a review of theoretical and empirical issues
    • Noland R.B., Polak J.W. Travel time variability: a review of theoretical and empirical issues. Transp. Rev. 2002, 22:39-54. 10.1080/01441640010022456.
    • (2002) Transp. Rev. , vol.22 , pp. 39-54
    • Noland, R.B.1    Polak, J.W.2
  • 28
    • 80053606397 scopus 로고    scopus 로고
    • Prediction of travel time variability for cost-benefit analysis
    • Peer S., Koopmans C.C., Verhoef E.T. Prediction of travel time variability for cost-benefit analysis. Transp. Res. Part A: Policy Pract. 2012, 46:79-90. 10.1016/j.tra.2011.09.016.
    • (2012) Transp. Res. Part A: Policy Pract. , vol.46 , pp. 79-90
    • Peer, S.1    Koopmans, C.C.2    Verhoef, E.T.3
  • 29
    • 84857836446 scopus 로고    scopus 로고
    • Analytic relationships between travel time reliability measures
    • Pu W. Analytic relationships between travel time reliability measures. Transp. Res. Rec.: J. Transp. Res. Board 2011, 2254:122-130. 10.3141/2254-13.
    • (2011) Transp. Res. Rec.: J. Transp. Res. Board , vol.2254 , pp. 122-130
    • Pu, W.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.