메뉴 건너뛰기




Volumn 60, Issue , 2013, Pages 1-12

Prediction, operations, and condition monitoring in wind energy

Author keywords

Condition monitoring and fault detection; Wind energy; Wind speed prediction; Wind turbine control

Indexed keywords

CONDITION MONITORING; FAULT DETECTION; WIND EFFECTS; WIND TURBINES;

EID: 84884593014     PISSN: 03605442     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.energy.2013.07.051     Document Type: Review
Times cited : (188)

References (132)
  • 2
    • 57649115875 scopus 로고    scopus 로고
    • U.S.Department of Energy, NREL/SR-500-41869, National Renewable Energy Laboratory, Golden, Co, Available at:
    • U.S.Department of Energy 20% wind energy by 2030: increasing wind energy's contribution to U.S. electricity supply 2008, NREL/SR-500-41869, National Renewable Energy Laboratory, Golden, Co, Available at:. http://www.nrel.gov/docs/fy08osti/41869.pdf.
    • (2008) 20% wind energy by 2030: increasing wind energy's contribution to U.S. electricity supply
  • 3
    • 13444294236 scopus 로고    scopus 로고
    • Instantaneous wind energy penetration in isolated electricity grids: concepts and review
    • Weisser D., Garcia R.S. Instantaneous wind energy penetration in isolated electricity grids: concepts and review. Renewable Energy 2005, 30(8):1299-1308.
    • (2005) Renewable Energy , vol.30 , Issue.8 , pp. 1299-1308
    • Weisser, D.1    Garcia, R.S.2
  • 6
    • 79961126223 scopus 로고    scopus 로고
    • Current methods and advances in forecasting of wind power generation
    • Foley A.M., Leahy P.G., Marvuglia A., McKeogh E.J. Current methods and advances in forecasting of wind power generation. ReneCble Energy 2012, 37(1):1-8.
    • (2012) ReneCble Energy , vol.37 , Issue.1 , pp. 1-8
    • Foley, A.M.1    Leahy, P.G.2    Marvuglia, A.3    McKeogh, E.J.4
  • 10
    • 78649936397 scopus 로고    scopus 로고
    • Short-horizon prediction of wind power: a data-driven approach
    • Kusiak A., Zhang Z. Short-horizon prediction of wind power: a data-driven approach. IEEE Transactions on Energy Conversion 2010, 25(4):1112-1122.
    • (2010) IEEE Transactions on Energy Conversion , vol.25 , Issue.4 , pp. 1112-1122
    • Kusiak, A.1    Zhang, Z.2
  • 11
    • 35549001332 scopus 로고    scopus 로고
    • Short term wind speed forecasting for wind turbine applications using linear prediction method
    • Riahy G.H., Abedi M. Short term wind speed forecasting for wind turbine applications using linear prediction method. Renewable Energy 2008, 33(1):35-41.
    • (2008) Renewable Energy , vol.33 , Issue.1 , pp. 35-41
    • Riahy, G.H.1    Abedi, M.2
  • 12
    • 0021866117 scopus 로고
    • Short-term wind prediction using Kalman filters
    • Bossanyi E.A. Short-term wind prediction using Kalman filters. Wind Engineering 1985, 9(1):1-8.
    • (1985) Wind Engineering , vol.9 , Issue.1 , pp. 1-8
    • Bossanyi, E.A.1
  • 13
    • 78649814612 scopus 로고    scopus 로고
    • Prediction of wind speed time series using modified Taylor Kriging method
    • Liu H., Shi J., Erdem E. Prediction of wind speed time series using modified Taylor Kriging method. Energy 2010, 35(12):4870-4879.
    • (2010) Energy , vol.35 , Issue.12 , pp. 4870-4879
    • Liu, H.1    Shi, J.2    Erdem, E.3
  • 14
    • 0033929783 scopus 로고    scopus 로고
    • Anew approach for wind speed prediction
    • Song Y.D. Anew approach for wind speed prediction. Wind Engineering 2000, 24(1):35-47.
    • (2000) Wind Engineering , vol.24 , Issue.1 , pp. 35-47
    • Song, Y.D.1
  • 15
    • 77955279506 scopus 로고    scopus 로고
    • Hour-ahead wind power and speed forecasting using simultaneous perturbation stochastic approximation (SPSA) algorithm and neural network with fuzzy inputs
    • Hong Y., Chang H., Chiu C. Hour-ahead wind power and speed forecasting using simultaneous perturbation stochastic approximation (SPSA) algorithm and neural network with fuzzy inputs. Energy 2010, 35(9):3870-3876.
    • (2010) Energy , vol.35 , Issue.9 , pp. 3870-3876
    • Hong, Y.1    Chang, H.2    Chiu, C.3
  • 16
    • 79952454042 scopus 로고    scopus 로고
    • Multiple architecture system for wind speed prediction
    • Bouzgou H., Benoudjit N. Multiple architecture system for wind speed prediction. Applied Energy 2011, 88(7):2463-2471.
    • (2011) Applied Energy , vol.88 , Issue.7 , pp. 2463-2471
    • Bouzgou, H.1    Benoudjit, N.2
  • 17
    • 79952183962 scopus 로고    scopus 로고
    • Acorrected hybrid approach for wind speed prediction in hexi corridor of China
    • Guo Z., Zhao J., Zhang W., Wang J. Acorrected hybrid approach for wind speed prediction in hexi corridor of China. Energy 2011, 36(3):1668-1679.
    • (2011) Energy , vol.36 , Issue.3 , pp. 1668-1679
    • Guo, Z.1    Zhao, J.2    Zhang, W.3    Wang, J.4
  • 18
    • 79952187703 scopus 로고    scopus 로고
    • Extraction of synoptic pressure patterns for long-term wind speed estimation in wind farms using evolutionary computing
    • Carro-Calvo L., Salcedo-Sanz S., Kirchner-Bossi N., Portilla-Figueras A., Prieto L., Garcia-Herrera R., et al. Extraction of synoptic pressure patterns for long-term wind speed estimation in wind farms using evolutionary computing. Energy 2011, 36(3):1571-1581.
    • (2011) Energy , vol.36 , Issue.3 , pp. 1571-1581
    • Carro-Calvo, L.1    Salcedo-Sanz, S.2    Kirchner-Bossi, N.3    Portilla-Figueras, A.4    Prieto, L.5    Garcia-Herrera, R.6
  • 20
    • 0001353940 scopus 로고
    • Maximum likelihood fitting of ARMA models to time series with missing observations
    • Jones R.H. Maximum likelihood fitting of ARMA models to time series with missing observations. Technometrics 1980, 22(3):389-395.
    • (1980) Technometrics , vol.22 , Issue.3 , pp. 389-395
    • Jones, R.H.1
  • 21
    • 0010162709 scopus 로고
    • Algorithm AS154: an algorithm for exact maximum likelihood estimation of autoregressive-moving average models by means of Kalman filtering
    • Gardner G., Harvey A.C., Phillips G.D.A. Algorithm AS154: an algorithm for exact maximum likelihood estimation of autoregressive-moving average models by means of Kalman filtering. Applied Statistics 1980, 29(3):311-322.
    • (1980) Applied Statistics , vol.29 , Issue.3 , pp. 311-322
    • Gardner, G.1    Harvey, A.C.2    Phillips, G.D.A.3
  • 26
    • 0001931325 scopus 로고    scopus 로고
    • Time series models to simulate and forecast hourly averaged wind speed in Quetta, Pakistan
    • Kamal L., Jafri Y.Z. Time series models to simulate and forecast hourly averaged wind speed in Quetta, Pakistan. Solar Energy 1997, 61(1):23-32.
    • (1997) Solar Energy , vol.61 , Issue.1 , pp. 23-32
    • Kamal, L.1    Jafri, Y.Z.2
  • 27
    • 78650562310 scopus 로고    scopus 로고
    • ARMA based approaches for forecasting the tuple of wind speed and direction
    • Erdem E., Shi J. ARMA based approaches for forecasting the tuple of wind speed and direction. Applied Energy 2011, 88(4):1405-1414.
    • (2011) Applied Energy , vol.88 , Issue.4 , pp. 1405-1414
    • Erdem, E.1    Shi, J.2
  • 28
    • 84859596365 scopus 로고    scopus 로고
    • Using conditional kernel density estimation for wind power density forecasting
    • Jeon J., Taylor J.W. Using conditional kernel density estimation for wind power density forecasting. Journal of the American Statistical Association 2012, 107(497):66-79.
    • (2012) Journal of the American Statistical Association , vol.107 , Issue.497 , pp. 66-79
    • Jeon, J.1    Taylor, J.W.2
  • 29
    • 20444437286 scopus 로고    scopus 로고
    • Forecast of hourly average wind speed with ARMA models in Navarre (Spain)
    • Torres J.T., Garcia A., De Blas M., De Francisco A. Forecast of hourly average wind speed with ARMA models in Navarre (Spain). Solar Energy 2005, 70(1):65-77.
    • (2005) Solar Energy , vol.70 , Issue.1 , pp. 65-77
    • Torres, J.T.1    Garcia, A.2    De Blas, M.3    De Francisco, A.4
  • 30
    • 84856532432 scopus 로고    scopus 로고
    • Performance evaluation and accuracy enhancement of a day-ahead wind power forecasting system in China
    • Zhao P., Wang J., Xia J., Dai Y., Sheng Y., Yue J. Performance evaluation and accuracy enhancement of a day-ahead wind power forecasting system in China. Renewable Energy 2012, 43:234-241.
    • (2012) Renewable Energy , vol.43 , pp. 234-241
    • Zhao, P.1    Wang, J.2    Xia, J.3    Dai, Y.4    Sheng, Y.5    Yue, J.6
  • 31
    • 84860254202 scopus 로고    scopus 로고
    • Amethod for short-term wind power prediction with multiple observation points
    • Khalid M., Savkin A.V. Amethod for short-term wind power prediction with multiple observation points. IEEE Transactions on Power Systems 2012, 27(2):579-586.
    • (2012) IEEE Transactions on Power Systems , vol.27 , Issue.2 , pp. 579-586
    • Khalid, M.1    Savkin, A.V.2
  • 32
    • 84859036543 scopus 로고    scopus 로고
    • AWNN-assisted wind power forecasting using feed-forward neural network
    • Bhaskar K., Singh S.N. AWNN-assisted wind power forecasting using feed-forward neural network. IEEE Transactions on Sustainable Energy 2012, 3(2):306-315.
    • (2012) IEEE Transactions on Sustainable Energy , vol.3 , Issue.2 , pp. 306-315
    • Bhaskar, K.1    Singh, S.N.2
  • 33
    • 79960235845 scopus 로고    scopus 로고
    • Application of radar wind observations for low-level NWP wind forecast validation
    • Salonen K., Niemela S., Fortelius C. Application of radar wind observations for low-level NWP wind forecast validation. Journal of Applied Meteorology and Climatology 2011, 50(6):1362-1371.
    • (2011) Journal of Applied Meteorology and Climatology , vol.50 , Issue.6 , pp. 1362-1371
    • Salonen, K.1    Niemela, S.2    Fortelius, C.3
  • 35
    • 0035470889 scopus 로고    scopus 로고
    • Greedy function approximation: a gradient boosting machine
    • Friedman J.H. Greedy function approximation: a gradient boosting machine. Annals of Statistics 2001, 29(5):1189-1232.
    • (2001) Annals of Statistics , vol.29 , Issue.5 , pp. 1189-1232
    • Friedman, J.H.1
  • 36
    • 0035478854 scopus 로고    scopus 로고
    • Random forests
    • Breiman L. Random forests. Machine Learning 2001, 45(1):5-32.
    • (2001) Machine Learning , vol.45 , Issue.1 , pp. 5-32
    • Breiman, L.1
  • 47
    • 34648852323 scopus 로고    scopus 로고
    • Locally recurrent neural networks for wind speed prediction using spatial correlation
    • Barbounis T.G., Theocharis J.B. Locally recurrent neural networks for wind speed prediction using spatial correlation. Information Sciences 2007, 177(24):5775-5797.
    • (2007) Information Sciences , vol.177 , Issue.24 , pp. 5775-5797
    • Barbounis, T.G.1    Theocharis, J.B.2
  • 48
    • 0032029065 scopus 로고    scopus 로고
    • Aneural networks approach for wind speed prediction
    • Mohandes M.A., Rehman S., Halawani T.O. Aneural networks approach for wind speed prediction. Renewable Energy 1998, 13(3):345-354.
    • (1998) Renewable Energy , vol.13 , Issue.3 , pp. 345-354
    • Mohandes, M.A.1    Rehman, S.2    Halawani, T.O.3
  • 49
    • 34250762015 scopus 로고    scopus 로고
    • Application of artificial neural networks for the wind speed prediction of target station using reference stations data
    • Bilgili M., Sahin B., Yasar A. Application of artificial neural networks for the wind speed prediction of target station using reference stations data. Renewable Energy 2007, 32(14):2350-2360.
    • (2007) Renewable Energy , vol.32 , Issue.14 , pp. 2350-2360
    • Bilgili, M.1    Sahin, B.2    Yasar, A.3
  • 50
    • 79959931064 scopus 로고    scopus 로고
    • Wind speed prediction for a target station using neural networks and particle swarm optimization
    • Poitras G., Cormier G. Wind speed prediction for a target station using neural networks and particle swarm optimization. Wind Engineering 2011, 35(3):369-380.
    • (2011) Wind Engineering , vol.35 , Issue.3 , pp. 369-380
    • Poitras, G.1    Cormier, G.2
  • 52
    • 34249753618 scopus 로고
    • Support-vector networks
    • Cortes C., Vapnik V. Support-vector networks. Machine Learning 1995, 20(3):273-297.
    • (1995) Machine Learning , vol.20 , Issue.3 , pp. 273-297
    • Cortes, C.1    Vapnik, V.2
  • 57
    • 54149110925 scopus 로고    scopus 로고
    • Anew strategy for wind speed forecasting using artificial intelligent methods
    • Monfared M., Rastegar H., Kojabadi H.M. Anew strategy for wind speed forecasting using artificial intelligent methods. Renewable Energy 2009, 34(3):845-848.
    • (2009) Renewable Energy , vol.34 , Issue.3 , pp. 845-848
    • Monfared, M.1    Rastegar, H.2    Kojabadi, H.M.3
  • 58
    • 58149474856 scopus 로고    scopus 로고
    • Accurate short-term wind speed prediction by exploiting diversity in input data using banks of artificial neural networks
    • Salcedo-Sanz S., Perez-Bellido A.M., Ortiz-Garcia E.G., Portilla-Figueras A., Prieto L., Correoso F. Accurate short-term wind speed prediction by exploiting diversity in input data using banks of artificial neural networks. Neurocomputing 2009, 72(4-6):1336-1341.
    • (2009) Neurocomputing , vol.72 , Issue.4-6 , pp. 1336-1341
    • Salcedo-Sanz, S.1    Perez-Bellido, A.M.2    Ortiz-Garcia, E.G.3    Portilla-Figueras, A.4    Prieto, L.5    Correoso, F.6
  • 59
    • 77949570119 scopus 로고    scopus 로고
    • Ahybrid statistical method to predict wind speed and wind power
    • Liu H., Tian H., Chen C., Li Y. Ahybrid statistical method to predict wind speed and wind power. Renewable Energy 2010, 35(8):1857-1861.
    • (2010) Renewable Energy , vol.35 , Issue.8 , pp. 1857-1861
    • Liu, H.1    Tian, H.2    Chen, C.3    Li, Y.4
  • 60
    • 79952183962 scopus 로고    scopus 로고
    • Acorrected hybrid approach for wind speed prediction in hexi corridor of China
    • Guo Z., Zhao J., Zhang W., Wang J. Acorrected hybrid approach for wind speed prediction in hexi corridor of China. Energy 2011, 36(3):1668-1679.
    • (2011) Energy , vol.36 , Issue.3 , pp. 1668-1679
    • Guo, Z.1    Zhao, J.2    Zhang, W.3    Wang, J.4
  • 61
    • 79952454042 scopus 로고    scopus 로고
    • Multiple architecture system for wind speed prediction
    • Bouzgou H., Benoudjit N. Multiple architecture system for wind speed prediction. Applied Energy 2011, 88(7):2463-2471.
    • (2011) Applied Energy , vol.88 , Issue.7 , pp. 2463-2471
    • Bouzgou, H.1    Benoudjit, N.2
  • 62
    • 84884589350 scopus 로고    scopus 로고
    • Blue Scout, , accessed in .
    • Blue Scout, , accessed in 2012. http://www.bluescout.com.
    • (2012)
  • 63
    • 0029360181 scopus 로고
    • Modeling and control of variable-speed wind-turbine drive-system dynamics
    • Novak P., Ekelund T., Jovik I., Schmidtbauer B. Modeling and control of variable-speed wind-turbine drive-system dynamics. IEEE Control Systems 1995, 15(4):28-38.
    • (1995) IEEE Control Systems , vol.15 , Issue.4 , pp. 28-38
    • Novak, P.1    Ekelund, T.2    Jovik, I.3    Schmidtbauer, B.4
  • 64
    • 14344265839 scopus 로고    scopus 로고
    • Wind turbine control for load reduction
    • Bossanyi E.A. Wind turbine control for load reduction. Wind Energy 2003, 6(3):229-244.
    • (2003) Wind Energy , vol.6 , Issue.3 , pp. 229-244
    • Bossanyi, E.A.1
  • 65
    • 84869885984 scopus 로고    scopus 로고
    • Control of wind turbines for fatigue loads reduction and contribution to the grid primary frequency regulation
    • Camblong H., Nourdine S., Vechiu I., Tapia G. Control of wind turbines for fatigue loads reduction and contribution to the grid primary frequency regulation. Energy 2012, 48(1):284-291.
    • (2012) Energy , vol.48 , Issue.1 , pp. 284-291
    • Camblong, H.1    Nourdine, S.2    Vechiu, I.3    Tapia, G.4
  • 66
    • 77954885821 scopus 로고    scopus 로고
    • Simulating feedback linearization control of wind turbines using high-order models
    • Kumar A., Stol K. Simulating feedback linearization control of wind turbines using high-order models. Wind Energy 2009, 13(5):419-432.
    • (2009) Wind Energy , vol.13 , Issue.5 , pp. 419-432
    • Kumar, A.1    Stol, K.2
  • 67
    • 82955189341 scopus 로고    scopus 로고
    • Control of flapwise vibrations in wind turbine blades using semi-active tuned mass dampers
    • Arrigan J., Pakrashi V., Basu B., Nagarajaiah S. Control of flapwise vibrations in wind turbine blades using semi-active tuned mass dampers. Structural Control and Health Monitoring 2010, 18(8):840-851.
    • (2010) Structural Control and Health Monitoring , vol.18 , Issue.8 , pp. 840-851
    • Arrigan, J.1    Pakrashi, V.2    Basu, B.3    Nagarajaiah, S.4
  • 68
    • 79952193095 scopus 로고    scopus 로고
    • Wind turbine aerodynamics and loads control in wind shear flow
    • Shen X., Zhu X., Du Z. Wind turbine aerodynamics and loads control in wind shear flow. Energy 2011, 36(3):1424-1434.
    • (2011) Energy , vol.36 , Issue.3 , pp. 1424-1434
    • Shen, X.1    Zhu, X.2    Du, Z.3
  • 69
    • 0027664152 scopus 로고
    • Control by variable rotor speed of a fixed-pitch wind turbine operating in a wide speed range
    • Thiringer T., Linders J. Control by variable rotor speed of a fixed-pitch wind turbine operating in a wide speed range. IEEE Transactions on Energy Conversion 1993, 8(3):520-526.
    • (1993) IEEE Transactions on Energy Conversion , vol.8 , Issue.3 , pp. 520-526
    • Thiringer, T.1    Linders, J.2
  • 72
    • 33845579904 scopus 로고    scopus 로고
    • Nonlinear control of variable speed wind turbines for generator torque limiting and power optimization
    • Boukhezzar B., Siguerdidjane H., Maureen Hand M. Nonlinear control of variable speed wind turbines for generator torque limiting and power optimization. ASME Journal of Solar Energy Engineering 2006, 128(4):516-530.
    • (2006) ASME Journal of Solar Energy Engineering , vol.128 , Issue.4 , pp. 516-530
    • Boukhezzar, B.1    Siguerdidjane, H.2    Maureen Hand, M.3
  • 73
    • 61649119609 scopus 로고    scopus 로고
    • Nonlinear control with wind estimation of a DFIG variable speed wind turbine for power capture optimization
    • Boukhezzar B., Siguerdidjane H. Nonlinear control with wind estimation of a DFIG variable speed wind turbine for power capture optimization. Energy Conversion and Management 2009, 50(4):885-892.
    • (2009) Energy Conversion and Management , vol.50 , Issue.4 , pp. 885-892
    • Boukhezzar, B.1    Siguerdidjane, H.2
  • 74
  • 75
    • 71649095012 scopus 로고    scopus 로고
    • Output power maximization of low-power wind energy conversion systems revisited: possible control solutions
    • Vlad C., Munteanu I., Bratcu A.I., Ceanga E. Output power maximization of low-power wind energy conversion systems revisited: possible control solutions. EnergyCnversion and Management 2010, 51(2):305-310.
    • (2010) EnergyCnversion and Management , vol.51 , Issue.2 , pp. 305-310
    • Vlad, C.1    Munteanu, I.2    Bratcu, A.I.3    Ceanga, E.4
  • 76
    • 77953136644 scopus 로고    scopus 로고
    • Intelligent approach to maximum power point tracking control strategy for variable-speed wind turbine generator system
    • Lin W., Hong C. Intelligent approach to maximum power point tracking control strategy for variable-speed wind turbine generator system. Energy 2010, 35(6):2440-2447.
    • (2010) Energy , vol.35 , Issue.6 , pp. 2440-2447
    • Lin, W.1    Hong, C.2
  • 77
    • 84859588111 scopus 로고    scopus 로고
    • Robust nonlinear control strategy to maximize energy capture in a variable speed wind turbine with an internal induction generator
    • Iyasere E., Salah M.H., Dawson D.M., Wagner J.R., Tatlicioglu E. Robust nonlinear control strategy to maximize energy capture in a variable speed wind turbine with an internal induction generator. Journal of Control Theory Applications 2012, 10(2):184-194.
    • (2012) Journal of Control Theory Applications , vol.10 , Issue.2 , pp. 184-194
    • Iyasere, E.1    Salah, M.H.2    Dawson, D.M.3    Wagner, J.R.4    Tatlicioglu, E.5
  • 78
    • 76649130518 scopus 로고    scopus 로고
    • Avariable speed wind turbine control strategy to meet wind farm grid code requirements
    • Muyeen S.M., Takahashi R., Murata T., Tamura J. Avariable speed wind turbine control strategy to meet wind farm grid code requirements. IEEE Transactions on Power Systems 2010, 25(1):331-340.
    • (2010) IEEE Transactions on Power Systems , vol.25 , Issue.1 , pp. 331-340
    • Muyeen, S.M.1    Takahashi, R.2    Murata, T.3    Tamura, J.4
  • 80
    • 84856521686 scopus 로고    scopus 로고
    • Anovel adaptive control scheme for dynamic performance improvement of DFIG-based wind turbines
    • Song Z., Shi T., Xia C., Chen W. Anovel adaptive control scheme for dynamic performance improvement of DFIG-based wind turbines. Energy 2012, 38(1):104-117.
    • (2012) Energy , vol.38 , Issue.1 , pp. 104-117
    • Song, Z.1    Shi, T.2    Xia, C.3    Chen, W.4
  • 81
    • 63449101037 scopus 로고    scopus 로고
    • Performance of a 3 kW wind turbine generator with variable pitch control system
    • Nagai B.M., Ameku K., Roy J.N. Performance of a 3 kW wind turbine generator with variable pitch control system. Applied Energy 2009, 86(9):1774-1782.
    • (2009) Applied Energy , vol.86 , Issue.9 , pp. 1774-1782
    • Nagai, B.M.1    Ameku, K.2    Roy, J.N.3
  • 82
    • 71549130448 scopus 로고    scopus 로고
    • Dynamic control of wind turbines
    • Kusiak A., Li W., Song Z. Dynamic control of wind turbines. Renewable Energy 2010, 35(2):456-463.
    • (2010) Renewable Energy , vol.35 , Issue.2 , pp. 456-463
    • Kusiak, A.1    Li, W.2    Song, Z.3
  • 83
    • 0029459264 scopus 로고
    • Design and development of fuzzy logic control strategies for wind turbine generators
    • Skikos G.D., Machias A.V. Design and development of fuzzy logic control strategies for wind turbine generators. Wind Engineering 1995, 19(5):235-248.
    • (1995) Wind Engineering , vol.19 , Issue.5 , pp. 235-248
    • Skikos, G.D.1    Machias, A.V.2
  • 84
    • 77955701599 scopus 로고    scopus 로고
    • Stochastic optimization of wind turbine power factor using stochastic model of wind power
    • Chen P., Siano P., Bak-Jensen B., Chen Z. Stochastic optimization of wind turbine power factor using stochastic model of wind power. IEEE Transactions on Sustainable Energy 2010, 1(1):19-29.
    • (2010) IEEE Transactions on Sustainable Energy , vol.1 , Issue.1 , pp. 19-29
    • Chen, P.1    Siano, P.2    Bak-Jensen, B.3    Chen, Z.4
  • 85
    • 4544381358 scopus 로고    scopus 로고
    • Nonlinear model identification of wind turbine with a neural network
    • Kelouwani S., Agbossou K. Nonlinear model identification of wind turbine with a neural network. IEEE Transactions on Energy Conversion 2004, 19(3):607-611.
    • (2004) IEEE Transactions on Energy Conversion , vol.19 , Issue.3 , pp. 607-611
    • Kelouwani, S.1    Agbossou, K.2
  • 86
    • 71549117932 scopus 로고    scopus 로고
    • Power optimization of wind turbines with datamining and evolutionary computation
    • Kusiak A., Song Z., Zheng H.Y. Power optimization of wind turbines with datamining and evolutionary computation. Renewable Energy 2010, 35(3):695-702.
    • (2010) Renewable Energy , vol.35 , Issue.3 , pp. 695-702
    • Kusiak, A.1    Song, Z.2    Zheng, H.Y.3
  • 87
    • 76049116449 scopus 로고    scopus 로고
    • Optimization of wind turbine energy and power factor with an evolutionary computation algorithm
    • Kusiak A., Zheng H.Y. Optimization of wind turbine energy and power factor with an evolutionary computation algorithm. Energy 2010, 35(3):1324-1332.
    • (2010) Energy , vol.35 , Issue.3 , pp. 1324-1332
    • Kusiak, A.1    Zheng, H.Y.2
  • 88
    • 70049104692 scopus 로고    scopus 로고
    • Anticipatory control of wind turbines with data-driven predictive models
    • Kusiak A., Song Z., Zheng H.Y. Anticipatory control of wind turbines with data-driven predictive models. IEEE Transactions on Energy Conversion 2009, 24(3):766-774.
    • (2009) IEEE Transactions on Energy Conversion , vol.24 , Issue.3 , pp. 766-774
    • Kusiak, A.1    Song, Z.2    Zheng, H.Y.3
  • 89
    • 78650396613 scopus 로고    scopus 로고
    • Adaptive control of a wind turbine with data mining andswarm intelligence
    • Kusiak A., Zhang Z. Adaptive control of a wind turbine with data mining andswarm intelligence. IEEE Transactions on Sustainable Energy 2011, 2(1):28-36.
    • (2011) IEEE Transactions on Sustainable Energy , vol.2 , Issue.1 , pp. 28-36
    • Kusiak, A.1    Zhang, Z.2
  • 90
    • 77955671168 scopus 로고    scopus 로고
    • Optimization of wind turbine performance withdata-driven models
    • Kusiak A., Zhang Z., Li M.Y. Optimization of wind turbine performance withdata-driven models. IEEE Transactions on Sustainable Energy 2010, 1(2):66-76.
    • (2010) IEEE Transactions on Sustainable Energy , vol.1 , Issue.2 , pp. 66-76
    • Kusiak, A.1    Zhang, Z.2    Li, M.Y.3
  • 91
    • 84856527344 scopus 로고    scopus 로고
    • Control of wind turbine power and vibration with a data-driven approach
    • Kusiak A., Zhang Z. Control of wind turbine power and vibration with a data-driven approach. Renewable Energy 2012, 43(7):73-82.
    • (2012) Renewable Energy , vol.43 , Issue.7 , pp. 73-82
    • Kusiak, A.1    Zhang, Z.2
  • 92
    • 77949567410 scopus 로고    scopus 로고
    • Nonlinear control of the doubly-fed induction generator in wind power systems
    • Soares O., Goncalves H., Martins A., Carvalho A. Nonlinear control of the doubly-fed induction generator in wind power systems. Renewable Energy 2010, 35(8):1662-1670.
    • (2010) Renewable Energy , vol.35 , Issue.8 , pp. 1662-1670
    • Soares, O.1    Goncalves, H.2    Martins, A.3    Carvalho, A.4
  • 93
    • 84859110015 scopus 로고    scopus 로고
    • Optimal estimation and control of WECS via a genetic neuro fuzzy approach
    • Kasiri H., Abadeh M.S., Momeni H.R. Optimal estimation and control of WECS via a genetic neuro fuzzy approach. Energy 2012, 40(1):438-444.
    • (2012) Energy , vol.40 , Issue.1 , pp. 438-444
    • Kasiri, H.1    Abadeh, M.S.2    Momeni, H.R.3
  • 94
    • 84867234265 scopus 로고    scopus 로고
    • Aminimal order observer based frequency control strategy for an integrated wind-battery-diesel power system
    • Howlader A., Izumi Y., Uehara A., Urasaki N., Senjyu T., Yona A., et al. Aminimal order observer based frequency control strategy for an integrated wind-battery-diesel power system. Energy 2012, 46(1):168-178.
    • (2012) Energy , vol.46 , Issue.1 , pp. 168-178
    • Howlader, A.1    Izumi, Y.2    Uehara, A.3    Urasaki, N.4    Senjyu, T.5    Yona, A.6
  • 95
    • 84861761397 scopus 로고    scopus 로고
    • Probabilistic energy and operation management of a microgrid containing wind/photovoltaic/fuel cell generation and energy storage devices based on point estimate method and self-adaptive gravitational search algorithm
    • Niknam T., Golestaneh F., Malekpour A. Probabilistic energy and operation management of a microgrid containing wind/photovoltaic/fuel cell generation and energy storage devices based on point estimate method and self-adaptive gravitational search algorithm. Energy 2012, 43(1):427-437.
    • (2012) Energy , vol.43 , Issue.1 , pp. 427-437
    • Niknam, T.1    Golestaneh, F.2    Malekpour, A.3
  • 96
    • 79551557584 scopus 로고    scopus 로고
    • Sizing optimization of grid-independent hybrid photovoltaic/wind power generation system
    • Kaabeche A., Belhamel M., Ibtiouen R. Sizing optimization of grid-independent hybrid photovoltaic/wind power generation system. Energy 2011, 36(2):1214-1222.
    • (2011) Energy , vol.36 , Issue.2 , pp. 1214-1222
    • Kaabeche, A.1    Belhamel, M.2    Ibtiouen, R.3
  • 97
    • 70949087672 scopus 로고    scopus 로고
    • Variability reduction through optimal combination of wind/wave resources-an Irish case study
    • Fusco F., Nolan G., Ringwood J. Variability reduction through optimal combination of wind/wave resources-an Irish case study. Energy 2010, 35(1):314-325.
    • (2010) Energy , vol.35 , Issue.1 , pp. 314-325
    • Fusco, F.1    Nolan, G.2    Ringwood, J.3
  • 98
    • 84859081945 scopus 로고    scopus 로고
    • Determination of short-term power dispatch schedule for a wind farm incorporated with dual-battery energystorage scheme
    • Yao D.L., Choi S.S., Tseng K.J., Lie T.T. Determination of short-term power dispatch schedule for a wind farm incorporated with dual-battery energystorage scheme. IEEE Transactions on Sustainable Energy 2012, 3(1):74-84.
    • (2012) IEEE Transactions on Sustainable Energy , vol.3 , Issue.1 , pp. 74-84
    • Yao, D.L.1    Choi, S.S.2    Tseng, K.J.3    Lie, T.T.4
  • 100
    • 40849089324 scopus 로고    scopus 로고
    • Optimal wind-thermal generating unit commitment
    • Chen C. Optimal wind-thermal generating unit commitment. IEEE Transactions on Energy Conversion 2008, 23(1):273-280.
    • (2008) IEEE Transactions on Energy Conversion , vol.23 , Issue.1 , pp. 273-280
    • Chen, C.1
  • 103
    • 84873127324 scopus 로고    scopus 로고
    • An efficient scenario-based and fuzzy self-adaptive learning particle swarm optimization approach for dynamic economic emission dispatch considering load and wind power uncertainties
    • Bahmani-Firouzi B., Farjah E., Azizipanah-Abarghooee R. An efficient scenario-based and fuzzy self-adaptive learning particle swarm optimization approach for dynamic economic emission dispatch considering load and wind power uncertainties. Energy 2013, 50:232-244.
    • (2013) Energy , vol.50 , pp. 232-244
    • Bahmani-Firouzi, B.1    Farjah, E.2    Azizipanah-Abarghooee, R.3
  • 104
    • 79955662939 scopus 로고    scopus 로고
    • Stochastic reactive power market with volatility of wind power considering voltage security
    • Kargarian A., Raoofat M. Stochastic reactive power market with volatility of wind power considering voltage security. Energy 2011, 36(5):2565-2571.
    • (2011) Energy , vol.36 , Issue.5 , pp. 2565-2571
    • Kargarian, A.1    Raoofat, M.2
  • 105
    • 33947301794 scopus 로고    scopus 로고
    • Reliability-based transmission reinforcement planning associated with large-scale wind farms
    • Billinton R., Wangdee W. Reliability-based transmission reinforcement planning associated with large-scale wind farms. IEEE Transactions on Power Systems 2007, 22(1):34-41.
    • (2007) IEEE Transactions on Power Systems , vol.22 , Issue.1 , pp. 34-41
    • Billinton, R.1    Wangdee, W.2
  • 108
    • 13344266571 scopus 로고    scopus 로고
    • European Wind Energy Association, Available at:, H. Chandler (Ed.)
    • Wind energy-the facts 2003, European Wind Energy Association, Available at:. http://www.ewea.org06-05-02S, H. Chandler (Ed.).
    • (2003) Wind energy-the facts
  • 117
    • 0032208882 scopus 로고    scopus 로고
    • Condition monitoring of cracked rotors through transient response
    • Shekar A.S., Prabhu B.S. Condition monitoring of cracked rotors through transient response. Mechanism and Machine Theory 1998, 33(8):1167-1175.
    • (1998) Mechanism and Machine Theory , vol.33 , Issue.8 , pp. 1167-1175
    • Shekar, A.S.1    Prabhu, B.S.2
  • 119
    • 33746237617 scopus 로고    scopus 로고
    • SIMAP: intelligent system for predictive maintenance application to the health condition monitoring of a wind turbine gearbox
    • Garcia M.C., Sanz-Bobi M.A., Del Pico J. SIMAP: intelligent system for predictive maintenance application to the health condition monitoring of a wind turbine gearbox. Journal of Computers in Industry 2006, 57(6):552-568.
    • (2006) Journal of Computers in Industry , vol.57 , Issue.6 , pp. 552-568
    • Garcia, M.C.1    Sanz-Bobi, M.A.2    Del Pico, J.3
  • 121
    • 33947371235 scopus 로고    scopus 로고
    • Enhancement of damage-detection of wind turbine blades via CWT-based approaches
    • Tsai C.S., Hsieh C.T., Huang S.J. Enhancement of damage-detection of wind turbine blades via CWT-based approaches. IEEE Transactions on Energy Conversion 2006, 21(3):776-781.
    • (2006) IEEE Transactions on Energy Conversion , vol.21 , Issue.3 , pp. 776-781
    • Tsai, C.S.1    Hsieh, C.T.2    Huang, S.J.3
  • 122
    • 85132108868 scopus 로고    scopus 로고
    • Lightning protection for wind turbine blades and bearings
    • Cotton I., Jenkins N., Pandiaraj K. Lightning protection for wind turbine blades and bearings. Wind Energy 2001, 4(1):23-37.
    • (2001) Wind Energy , vol.4 , Issue.1 , pp. 23-37
    • Cotton, I.1    Jenkins, N.2    Pandiaraj, K.3
  • 126
    • 78650332092 scopus 로고    scopus 로고
    • Adata-driven approach for monitoring blade pitch faultsin wind turbines
    • Kusiak A., Verma A. Adata-driven approach for monitoring blade pitch faultsin wind turbines. IEEE Transactions on Sustainable Energy 2011, 2(1):87-96.
    • (2011) IEEE Transactions on Sustainable Energy , vol.2 , Issue.1 , pp. 87-96
    • Kusiak, A.1    Verma, A.2
  • 127
    • 79551620605 scopus 로고    scopus 로고
    • Prediction of status patterns of wind turbines: a data-mining approach
    • 011008-1-011008-10
    • Kusiak A., Verma A. Prediction of status patterns of wind turbines: a data-mining approach. ASME Journal of Solar Energy Engineering 2011, 133(1). 011008-1-011008-10.
    • (2011) ASME Journal of Solar Energy Engineering , vol.133 , Issue.1
    • Kusiak, A.1    Verma, A.2
  • 128
    • 84859977476 scopus 로고    scopus 로고
    • Fault monitoring wind turbine generator brushes: a data mining approach
    • Verma A., Kusiak A. Fault monitoring wind turbine generator brushes: a data mining approach. ASME Journal of Solar Energy Engineering 2012, 134(2):021001-1-021001-9.
    • (2012) ASME Journal of Solar Energy Engineering , vol.134 , Issue.2 , pp. 0210011-0210019
    • Verma, A.1    Kusiak, A.2
  • 130
    • 70349311540 scopus 로고    scopus 로고
    • Online wind turbine fault detection through automated SCADA data analysis
    • Zaher A., McArthur S.D.J., Infield D.G., Patel Y. Online wind turbine fault detection through automated SCADA data analysis. Wind Energy 2009, 12(6):574-593.
    • (2009) Wind Energy , vol.12 , Issue.6 , pp. 574-593
    • Zaher, A.1    McArthur, S.D.J.2    Infield, D.G.3    Patel, Y.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.