메뉴 건너뛰기




Volumn 125, Issue , 2014, Pages 128-137

Rao-Blackwellized particle filtering with Gaussian mixture models for robust visual tracking

Author keywords

Expectation Maximization; Gaussian mixture model; Rao Blackwellized particle filtering; Visual tracking

Indexed keywords

ALGORITHMS; IMAGE SEGMENTATION; MONTE CARLO METHODS; OBJECT RECOGNITION; TARGET TRACKING;

EID: 84901925816     PISSN: 10773142     EISSN: 1090235X     Source Type: Journal    
DOI: 10.1016/j.cviu.2014.04.002     Document Type: Article
Times cited : (13)

References (29)
  • 1
    • 0036475447 scopus 로고    scopus 로고
    • A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking
    • DOI 10.1109/78.978374, PII S1053587X0200569X
    • S. Arulampalam, S. Maskell, N. Gordon, and T. Clapp A tutorial on particle filters for on-line non-linear/non-Gaussian Bayesian tracking IEEE Trans. Signal Process. 50 2002 174 188 (Pubitemid 34291500)
    • (2002) IEEE Transactions on Signal Processing , vol.50 , Issue.2 , pp. 174-188
    • Arulampalam, M.S.1    Maskell, S.2    Gordon, N.3    Clapp, T.4
  • 4
    • 0032136153 scopus 로고    scopus 로고
    • CONDENSATION - Conditional Density Propagation for Visual Tracking
    • M. Isard, and A. Blake CONDENSATION - conditional density propagation for visual tracking Int. J. Comput. Vis. 29 1998 5 28 (Pubitemid 128523364)
    • (1998) International Journal of Computer Vision , vol.29 , Issue.1 , pp. 5-28
    • Isard, M.1    Blake, A.2
  • 9
  • 10
    • 84862801321 scopus 로고    scopus 로고
    • Efficient visual tracking using particle filter with incremental likelihood calculation
    • H. Liu, and F. Sun Efficient visual tracking using particle filter with incremental likelihood calculation Inform. Sci. 195 2012 141 153
    • (2012) Inform. Sci. , vol.195 , pp. 141-153
    • Liu, H.1    Sun, F.2
  • 14
    • 64849104875 scopus 로고    scopus 로고
    • Visual tracking by continuous density propagation in sequential bayesian filtering framework
    • B. Han, Y. Zhu, D. Comaniciu, and L.S. Davis Visual tracking by continuous density propagation in sequential bayesian filtering framework IEEE Trans. Pattern Anal. Mach. Intell. 31 2009 919 930
    • (2009) IEEE Trans. Pattern Anal. Mach. Intell. , vol.31 , pp. 919-930
    • Han, B.1    Zhu, Y.2    Comaniciu, D.3    Davis, L.S.4
  • 15
    • 39749173057 scopus 로고    scopus 로고
    • Incremental learning for robust visual tracking
    • DOI 10.1007/s11263-007-0075-7, Special issue on Machine Learning for Vision, Guest Editors: William Freeman, Pietro Perona and Bernhard Scholkopf
    • D. Ross, J. Lim, and R. Lin Incremental learning for robust visual tracking Int. J. Comput. Vis. 77 2008 125 141 (Pubitemid 351294740)
    • (2008) International Journal of Computer Vision , vol.77 , Issue.1-3 , pp. 125-141
    • Ross, D.A.1    Lim, J.2    Lin, R.-S.3    Yang, M.-H.4
  • 16
    • 7444266896 scopus 로고    scopus 로고
    • Visual tracking and recognition using appearance-adaptive models in particle filters
    • S. Zhou, R. Chellappa, and B. Moghaddam Visual tracking and recognition using appearance-adaptive models in particle filters IEEE Trans. Image Process. 13 2004 1491 1506
    • (2004) IEEE Trans. Image Process. , vol.13 , pp. 1491-1506
    • Zhou, S.1    Chellappa, R.2    Moghaddam, B.3
  • 25
    • 84873583197 scopus 로고    scopus 로고
    • Caviar Datasets. < http://homepages.inf.ed.ac.uk/rbf/CAVIARDATA1/ >.
    • Caviar Datasets
  • 27
    • 0033715577 scopus 로고    scopus 로고
    • Fast, reliable head tracking under varying illumination: An approach based on registration of texture-mapped 3D models
    • M.L. Cascia, S. Sclaroff, and V. Athitsos Fast, reliable head tracking under varying illumination: an approach based on registration of texture-mapped 3D models IEEE Trans. Pattern Anal. Mach. Intell. 22 2000 322 336
    • (2000) IEEE Trans. Pattern Anal. Mach. Intell. , vol.22 , pp. 322-336
    • Cascia, M.L.1    Sclaroff, S.2    Athitsos, V.3
  • 28
    • 84874372912 scopus 로고    scopus 로고
    • PETS Datasets. < http://www.cvg.cs.rdg.ac.uk/slides/pets.html >.
    • PETS Datasets


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.