메뉴 건너뛰기




Volumn 29, Issue 3-4, 2014, Pages 407-430

High-dimensional variable screening and bias in subsequent inference, with an empirical comparison

Author keywords

Elastic net; Lasso; Linear model; Ridge; Sparsity; Sure independence screening; Variable selection

Indexed keywords


EID: 84901833265     PISSN: 09434062     EISSN: 16139658     Source Type: Journal    
DOI: 10.1007/s00180-013-0436-3     Document Type: Article
Times cited : (60)

References (34)
  • 1
    • 73349108769 scopus 로고    scopus 로고
    • Sufficient dimension reduction and prediction in regression
    • Adragni K, Cook R (2009) Sufficient dimension reduction and prediction in regression. Philos Trans R Soc A 367: 4385-4400.
    • (2009) Philos Trans R Soc A , vol.367 , pp. 4385-4400
    • Adragni, K.1    Cook, R.2
  • 2
    • 68649086910 scopus 로고    scopus 로고
    • Simultaneous analysis of Lasso and Dantzig selector
    • Bickel P, Ritov Y, Tsybakov A (2009) Simultaneous analysis of Lasso and Dantzig selector. Ann Stat 37: 1705-1732.
    • (2009) Ann Stat , vol.37 , pp. 1705-1732
    • Bickel, P.1    Ritov, Y.2    Tsybakov, A.3
  • 3
    • 84901825259 scopus 로고    scopus 로고
    • Statistical significance in high-dimensional linear models
    • (to appear)
    • Bühlmann P (2012) Statistical significance in high-dimensional linear models. Bernoulli (to appear).
    • (2012) Bernoulli
    • Bühlmann, P.1
  • 5
    • 84901828109 scopus 로고    scopus 로고
    • High-dimensional statistics with a view towards applications in biology
    • (to appear)
    • Bühlmann P, Meier L, Kalisch M (2013) High-dimensional statistics with a view towards applications in biology. Annu Rev Stat Appl (to appear).
    • (2013) Annu Rev Stat Appl
    • Bühlmann, P.1    Meier, L.2    Kalisch, M.3
  • 6
    • 50849114939 scopus 로고    scopus 로고
    • Sparsity oracle inequalities for the Lasso
    • Bunea F, Tsybakov A, Wegkamp M (2007) Sparsity oracle inequalities for the Lasso. Electron J Stat 1: 169-194.
    • (2007) Electron J Stat , vol.1 , pp. 169-194
    • Bunea, F.1    Tsybakov, A.2    Wegkamp, M.3
  • 7
    • 34548275795 scopus 로고    scopus 로고
    • The Dantzig selector: statistical estimation when p is much larger than n
    • Candès E, Tao T (2007) The Dantzig selector: statistical estimation when p is much larger than n. Ann Stat 35(6): 2313-2351.
    • (2007) Ann Stat , vol.35 , Issue.6 , pp. 2313-2351
    • Candès, E.1    Tao, T.2
  • 8
    • 12344294601 scopus 로고    scopus 로고
    • Bagboosting for tumor classification with gene expression data
    • Dettling M (2004) Bagboosting for tumor classification with gene expression data. Bioinformatics 20(18): 3583-3593.
    • (2004) Bioinformatics , vol.20 , Issue.18 , pp. 3583-3593
    • Dettling, M.1
  • 9
    • 1542784498 scopus 로고    scopus 로고
    • Variable selection via nonconcave penalized likelihood and its oracle properties
    • Fan J, Li R (2001) Variable selection via nonconcave penalized likelihood and its oracle properties. J Am Stat Assoc 96: 1348-1360.
    • (2001) J Am Stat Assoc , vol.96 , pp. 1348-1360
    • Fan, J.1    Li, R.2
  • 10
    • 53849086824 scopus 로고    scopus 로고
    • Sure independence screening for ultra-high dimensional feature space (with discussion)
    • Fan J, Lv J (2008) Sure independence screening for ultra-high dimensional feature space (with discussion). J R Stat Soc Ser B 70: 849-911.
    • (2008) J R Stat Soc Ser B , vol.70 , pp. 849-911
    • Fan, J.1    Lv, J.2
  • 11
    • 77950537175 scopus 로고    scopus 로고
    • Regularization paths for generalized linear models via coordinate descent
    • Friedman J, Hastie T, Tibshirani R (2010) Regularization paths for generalized linear models via coordinate descent. J Stat Softw 33(1): 1-22.
    • (2010) J Stat Softw , vol.33 , Issue.1 , pp. 1-22
    • Friedman, J.1    Hastie, T.2    Tibshirani, R.3
  • 12
    • 31344454903 scopus 로고    scopus 로고
    • Persistence in high-dimensional predictor selection and the virtue of over-parametrization
    • Greenshtein E, Ritov Y (2004) Persistence in high-dimensional predictor selection and the virtue of over-parametrization. Bernoulli 10: 971-988.
    • (2004) Bernoulli , vol.10 , pp. 971-988
    • Greenshtein, E.1    Ritov, Y.2
  • 14
    • 72249100613 scopus 로고    scopus 로고
    • The Dantzig selector and sparsity oracle inequalities
    • Koltchinskii V (2009a) The Dantzig selector and sparsity oracle inequalities. Bernoulli 15: 799-828.
    • (2009) Bernoulli , vol.15 , pp. 799-828
    • Koltchinskii, V.1
  • 16
    • 33747163541 scopus 로고    scopus 로고
    • High-dimensional graphs and variable selection with the Lasso
    • Meinshausen N, Bühlmann P (2006) High-dimensional graphs and variable selection with the Lasso. Ann Stat 34: 1436-1462.
    • (2006) Ann Stat , vol.34 , pp. 1436-1462
    • Meinshausen, N.1    Bühlmann, P.2
  • 18
    • 65349193793 scopus 로고    scopus 로고
    • Lasso-type recovery of sparse representations for high-dimensional data
    • Meinshausen N, Yu B (2009) Lasso-type recovery of sparse representations for high-dimensional data. Ann Stat 37: 246-270.
    • (2009) Ann Stat , vol.37 , pp. 246-270
    • Meinshausen, N.1    Yu, B.2
  • 19
    • 77956925453 scopus 로고    scopus 로고
    • Restricted eigenvalue properties for correlated Gaussian designs
    • Raskutti G, Wainwright M, Yu B (2010) Restricted eigenvalue properties for correlated Gaussian designs. J Mach Learn Res 11: 2241-2259.
    • (2010) J Mach Learn Res , vol.11 , pp. 2241-2259
    • Raskutti, G.1    Wainwright, M.2    Yu, B.3
  • 20
    • 84872026482 scopus 로고    scopus 로고
    • Estimation in high-dimensional linear models with deterministic design matrices
    • Shao J, Deng X (2012) Estimation in high-dimensional linear models with deterministic design matrices. Ann Stat 40: 812-831.
    • (2012) Ann Stat , vol.40 , pp. 812-831
    • Shao, J.1    Deng, X.2
  • 21
    • 84869449202 scopus 로고    scopus 로고
    • Scaled sparse linear regression
    • Sun T, Zhang C-H (2012) Scaled sparse linear regression. Biometrika 99: 879-898.
    • (2012) Biometrika , vol.99 , pp. 879-898
    • Sun, T.1    Zhang, C.-H.2
  • 22
    • 85194972808 scopus 로고    scopus 로고
    • Regression shrinkage and selection via the Lasso
    • Tibshirani R (1996) Regression shrinkage and selection via the Lasso. J R Stat Soc Ser B 58: 267-288.
    • (1996) J R Stat Soc Ser B , vol.58 , pp. 267-288
    • Tibshirani, R.1
  • 23
    • 79551473604 scopus 로고    scopus 로고
    • The deterministic Lasso
    • American Statistical Association, Alexandria, VA
    • van de Geer S (2007) The deterministic Lasso. In: JSM proceedings, p. 140. American Statistical Association, Alexandria, VA.
    • (2007) JSM proceedings , pp. 140
    • van de Geer, S.1
  • 24
    • 51049121146 scopus 로고    scopus 로고
    • High-dimensional generalized linear models and the Lasso
    • van de Geer S (2008) High-dimensional generalized linear models and the Lasso. Ann Stat 36: 614-645.
    • (2008) Ann Stat , vol.36 , pp. 614-645
    • van de Geer, S.1
  • 25
    • 77955054299 scopus 로고    scopus 로고
    • On the conditions used to prove oracle results for the Lasso
    • van de Geer S, Bühlmann P (2009) On the conditions used to prove oracle results for the Lasso. Electron J Stat 3: 1360-1392.
    • (2009) Electron J Stat , vol.3 , pp. 1360-1392
    • van de Geer, S.1    Bühlmann, P.2
  • 26
    • 79960978269 scopus 로고    scopus 로고
    • The adaptive and the thresholded Lasso for potentially misspecified models (and a lower bound for the Lasso)
    • van de Geer S, Bühlmann P, Zhou S (2011) The adaptive and the thresholded Lasso for potentially misspecified models (and a lower bound for the Lasso). Electron J Stat 5: 688-749.
    • (2011) Electron J Stat , vol.5 , pp. 688-749
    • van de Geer, S.1    Bühlmann, P.2    Zhou, S.3
  • 27
    • 65749083666 scopus 로고    scopus 로고
    • 1-constrained quadratic programming (Lasso)
    • 1-constrained quadratic programming (Lasso). IEEE Trans Inf Theory 55: 2183-2202.
    • (2009) IEEE Trans Inf Theory , vol.55 , pp. 2183-2202
    • Wainwright, M.1
  • 28
    • 69049091975 scopus 로고    scopus 로고
    • High dimensional variable selection
    • Wasserman L, Roeder K (2009) High dimensional variable selection. Ann Stat 37: 2178-2201.
    • (2009) Ann Stat , vol.37 , pp. 2178-2201
    • Wasserman, L.1    Roeder, K.2
  • 31
    • 50949096321 scopus 로고    scopus 로고
    • The sparsity and bias of the Lasso selection in high-dimensional linear regression
    • Zhang C-H, Huang J (2008) The sparsity and bias of the Lasso selection in high-dimensional linear regression. Ann Stat 36: 1567-1594.
    • (2008) Ann Stat , vol.36 , pp. 1567-1594
    • Zhang, C.-H.1    Huang, J.2
  • 32
    • 33845263263 scopus 로고    scopus 로고
    • On model selection consistency of Lasso
    • Zhao P, Yu B (2006) On model selection consistency of Lasso. J Mach Learn Res 7: 2541-2563.
    • (2006) J Mach Learn Res , vol.7 , pp. 2541-2563
    • Zhao, P.1    Yu, B.2
  • 33
    • 16244401458 scopus 로고    scopus 로고
    • Regularization and variable selection via the elastic net
    • Zou H, Hastie T (2005) Regularization and variable selection via the elastic net. J R Stat Soc Ser B 67: 301-320.
    • (2005) J R Stat Soc Ser B , vol.67 , pp. 301-320
    • Zou, H.1    Hastie, T.2
  • 34
    • 33846114377 scopus 로고    scopus 로고
    • The adaptive Lasso and its oracle properties
    • Zou H (2006) The adaptive Lasso and its oracle properties. J Am Stat Assoc 101: 1418-1429.
    • (2006) J Am Stat Assoc , vol.101 , pp. 1418-1429
    • Zou, H.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.