메뉴 건너뛰기




Volumn 278, Issue , 2014, Pages 715-735

Fuzzy partitioning of continuous attributes through discretization methods to construct fuzzy decision tree classifiers

Author keywords

Discretization; Fuzzy decision tree; Fuzzy partitioning; Membership function

Indexed keywords

DISCRETE EVENT SIMULATION; ENTROPY; FORESTRY; MEMBERSHIP FUNCTIONS; TREES (MATHEMATICS); VOLUME MEASUREMENT;

EID: 84901824809     PISSN: 00200255     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.ins.2014.03.087     Document Type: Article
Times cited : (45)

References (59)
  • 1
    • 84881377547 scopus 로고    scopus 로고
    • Interpretability-based fuzzy decision tree classifier a hybrid of the subtractive clustering and the multi-objective evolutionary algorithm
    • F. Afsari, M. Eftekhari, E. Eslami, and P.Y. Woo Interpretability-based fuzzy decision tree classifier a hybrid of the subtractive clustering and the multi-objective evolutionary algorithm Soft Comput. 17 2013 1673 1686
    • (2013) Soft Comput. , vol.17 , pp. 1673-1686
    • Afsari, F.1    Eftekhari, M.2    Eslami, E.3    Woo, P.Y.4
  • 4
    • 0011988594 scopus 로고    scopus 로고
    • Multivariate discretization for set mining
    • S.D. Bay Multivariate discretization for set mining Knowl. Inf. Syst. 3 2001 491 512
    • (2001) Knowl. Inf. Syst. , vol.3 , pp. 491-512
    • Bay, S.D.1
  • 5
    • 2342626638 scopus 로고    scopus 로고
    • Khiops: A statistical discretization method of continuous attributes
    • M. Boulle Khiops: a statistical discretization method of continuous attributes Mach. Learn. 55 2004 53 69
    • (2004) Mach. Learn. , vol.55 , pp. 53-69
    • Boulle, M.1
  • 6
    • 33749007698 scopus 로고    scopus 로고
    • MODL: A Bayes optimal discretization method for continuous attributes
    • M. Boullé MODL: A Bayes optimal discretization method for continuous attributes Mach. Learn. 65 2006 131 165
    • (2006) Mach. Learn. , vol.65 , pp. 131-165
    • Boullé, M.1
  • 8
    • 58349110117 scopus 로고    scopus 로고
    • Fuzzy classification systems based on fuzzy information gain measures
    • S.M. Chen, and J.D. Shie Fuzzy classification systems based on fuzzy information gain measures Expert Syst. Appl. 36 2009 4517 4522
    • (2009) Expert Syst. Appl. , vol.36 , pp. 4517-4522
    • Chen, S.M.1    Shie, J.D.2
  • 9
    • 0031077375 scopus 로고    scopus 로고
    • Automatically determine the membership function based on the maximum entropy principle
    • H.D. Cheng, and J.-R. Chen Automatically determine the membership function based on the maximum entropy principle Inf. Sci. 96 1997 163 182
    • (1997) Inf. Sci. , vol.96 , pp. 163-182
    • Cheng, H.D.1    Chen, J.-R.2
  • 11
    • 0029345982 scopus 로고
    • Class-dependent discretization for inductive learning from continuous and mixed-mode data
    • J.Y. Ching, A.K.C. Wong, and K.C.C. Chan Class-dependent discretization for inductive learning from continuous and mixed-mode data IEEE Trans. Pattern Anal. Mach. Intell. 17 1995 641 651
    • (1995) IEEE Trans. Pattern Anal. Mach. Intell. , vol.17 , pp. 641-651
    • Ching, J.Y.1    Wong, A.K.C.2    Chan, K.C.C.3
  • 12
    • 0000864105 scopus 로고    scopus 로고
    • Global discretization of continuous attributes as preprocessing for machine learning
    • M.R. Chmielewski, and J.W. Grzymala-Busse Global discretization of continuous attributes as preprocessing for machine learning Int. J. Approx. Reason. 15 1996 319 331
    • (1996) Int. J. Approx. Reason. , vol.15 , pp. 319-331
    • Chmielewski, M.R.1    Grzymala-Busse, J.W.2
  • 13
    • 29644438050 scopus 로고    scopus 로고
    • Statistical comparisons of classifiers over multiple data sets
    • J. Demšar Statistical comparisons of classifiers over multiple data sets J. Mach. Learn. Res. 7 2006 1 30
    • (2006) J. Mach. Learn. Res. , vol.7 , pp. 1-30
    • Demšar, J.1
  • 14
    • 85139983802 scopus 로고
    • Supervised and unsupervised discretization of continuous features
    • A. Prieditis, S. Russell (Eds.) Tahoe City, California, USA
    • J. Dougherty, R. Kohavi, M. Sahami, Supervised and unsupervised discretization of continuous features, in: A. Prieditis, S. Russell (Eds.) Proceedings of the Twelfth International Conference on Machine Learning, Tahoe City, California, USA, 1995, pp. 194-202.
    • (1995) Proceedings of the Twelfth International Conference on Machine Learning , pp. 194-202
    • Dougherty, J.1    Kohavi, R.2    Sahami, M.3
  • 15
    • 0020741614 scopus 로고
    • Unfair coins and necessity measures: Towards a possibilistic interpretation of histograms
    • D. Dubois, and H. Prade Unfair coins and necessity measures: towards a possibilistic interpretation of histograms Fuzzy Sets Syst. 10 1983 15 20
    • (1983) Fuzzy Sets Syst. , vol.10 , pp. 15-20
    • Dubois, D.1    Prade, H.2
  • 16
    • 0002593344 scopus 로고
    • Multi-interval discretization of continuous-valued attributes for classification learning
    • Chambery, France
    • Fayyad, Irani, Multi-interval discretization of continuous-valued attributes for classification learning, in: Proceedings of the International Joint Conference on Uncertainty in AI, Chambery, France, 1993, pp. 1022-1027.
    • (1993) Proceedings of the International Joint Conference on Uncertainty in AI , pp. 1022-1027
    • Fayyad, I.1
  • 17
    • 78649934709 scopus 로고    scopus 로고
    • University of California, School of Information and Computer Science, Irvine, CA
    • A. Frank, A. Asuncion, UCI Machine Learning Repository, University of California, School of Information and Computer Science, Irvine, CA, 2010. < http://archive.ics.uci.edu/ml >.
    • (2010) UCI Machine Learning Repository
    • Frank, A.1    Asuncion, A.2
  • 18
    • 77549084648 scopus 로고    scopus 로고
    • Advanced nonparametric tests for multiple comparisons in the design of experiments in computational intelligence and data mining: Experimental analysis of power
    • S. García, A. Fernández, J. Luengo, and F. Herrera Advanced nonparametric tests for multiple comparisons in the design of experiments in computational intelligence and data mining: experimental analysis of power Inf. Sci. 180 2010 2044 2064
    • (2010) Inf. Sci. , vol.180 , pp. 2044-2064
    • García, S.1    Fernández, A.2    Luengo, J.3    Herrera, F.4
  • 19
    • 58149287952 scopus 로고    scopus 로고
    • An extension on statistical comparisons of classifiers over multiple data sets for all pairwise comparisons
    • S. Garcia, and F. Herrera An extension on statistical comparisons of classifiers over multiple data sets for all pairwise comparisons J. Mach. Learn. Res. 9 2008 2677 2694
    • (2008) J. Mach. Learn. Res. , vol.9 , pp. 2677-2694
    • Garcia, S.1    Herrera, F.2
  • 22
    • 77949839781 scopus 로고    scopus 로고
    • A clustering-based discretization for supervised learning
    • A. Gupta, K.G. Mehrotra, and C. Mohan A clustering-based discretization for supervised learning Stat. Probabil. Lett. 80 2010 816 824
    • (2010) Stat. Probabil. Lett. , vol.80 , pp. 816-824
    • Gupta, A.1    Mehrotra, K.G.2    Mohan, C.3
  • 24
    • 0027580356 scopus 로고
    • Very simple classification rules perform well on most commonly used datasets
    • R.C. Holte Very simple classification rules perform well on most commonly used datasets Mach. Learn. 11 1993 63 90
    • (1993) Mach. Learn. , vol.11 , pp. 63-90
    • Holte, R.C.1
  • 25
    • 80055049299 scopus 로고    scopus 로고
    • A multi-level ant-colony mining algorithm for membership functions
    • T.P. Hong, Y.F. Tung, S.L. Wang, Y.L. Wu, and M.T. Wu A multi-level ant-colony mining algorithm for membership functions Inf. Sci. 182 2012 3 14
    • (2012) Inf. Sci. , vol.182 , pp. 3-14
    • Hong, T.P.1    Tung, Y.F.2    Wang, S.L.3    Wu, Y.L.4    Wu, M.T.5
  • 26
    • 0027702852 scopus 로고
    • Efficient fuzzy partition of pattern space for classification problems
    • H. Ishibuchi, K. Nozaki, and H. Tanaka Efficient fuzzy partition of pattern space for classification problems Fuzzy Sets Syst. 59 1993 295 304
    • (1993) Fuzzy Sets Syst. , vol.59 , pp. 295-304
    • Ishibuchi, H.1    Nozaki, K.2    Tanaka, H.3
  • 29
    • 0026995495 scopus 로고
    • Chimerge: Discretization of numeric attributes
    • AAAI Press San Jose, CA
    • R. Kerber Chimerge: discretization of numeric attributes National Conference on Artificial Intelligence 1992 AAAI Press San Jose, CA 123 128
    • (1992) National Conference on Artificial Intelligence , pp. 123-128
    • Kerber, R.1
  • 32
    • 34047243825 scopus 로고    scopus 로고
    • A Hellinger-based discretization method for numeric attributes in classification learning
    • C.H. Lee A Hellinger-based discretization method for numeric attributes in classification learning Knowl. Based Syst. 20 2007 419 425
    • (2007) Knowl. Based Syst. , vol.20 , pp. 419-425
    • Lee, C.H.1
  • 35
    • 33749408268 scopus 로고    scopus 로고
    • A discretization algorithm based on a heterogeneity criterion
    • X. Liu, and H. Wang A discretization algorithm based on a heterogeneity criterion IEEE Trans. Knowl. Data Eng. 17 2005 1166 1173
    • (2005) IEEE Trans. Knowl. Data Eng. , vol.17 , pp. 1166-1173
    • Liu, X.1    Wang, H.2
  • 36
    • 84893734571 scopus 로고    scopus 로고
    • Learning membership functions for fuzzy sets through modified support vector clustering
    • F. Masulli, G. Pasi, R. Yager, Springer International Publishing
    • D. Malchiodi, and W. Pedrycz Learning membership functions for fuzzy sets through modified support vector clustering F. Masulli, G. Pasi, R. Yager, Fuzzy Logic and Applications 2013 Springer International Publishing 52 59
    • (2013) Fuzzy Logic and Applications , pp. 52-59
    • Malchiodi, D.1    Pedrycz, W.2
  • 37
    • 0000418873 scopus 로고    scopus 로고
    • An overview of membership function generation techniques for pattern recognition
    • S. Medasani, J. Kim, and R. Krishnapuram An overview of membership function generation techniques for pattern recognition Int. J. Approx. Reason. 19 1998 391 417
    • (1998) Int. J. Approx. Reason. , vol.19 , pp. 391-417
    • Medasani, S.1    Kim, J.2    Krishnapuram, R.3
  • 38
  • 39
    • 37249038154 scopus 로고    scopus 로고
    • A method for automatic membership function estimation based on fuzzy measures
    • P. Melin, O. Castillo, L. Aguilar, J. Kacprzyk, W. Pedrycz, Springer Berlin Heidelberg
    • G. Nieradka, and B. Butkiewicz A method for automatic membership function estimation based on fuzzy measures P. Melin, O. Castillo, L. Aguilar, J. Kacprzyk, W. Pedrycz, Foundations of Fuzzy Logic and Soft Computing 2007 Springer Berlin Heidelberg 451 460
    • (2007) Foundations of Fuzzy Logic and Soft Computing , pp. 451-460
    • Nieradka, G.1    Butkiewicz, B.2
  • 40
    • 0035313865 scopus 로고    scopus 로고
    • Fuzzy equalization in the construction of fuzzy sets
    • W. Pedrycz Fuzzy equalization in the construction of fuzzy sets Fuzzy Sets Syst. 119 2001 329 335
    • (2001) Fuzzy Sets Syst. , vol.119 , pp. 329-335
    • Pedrycz, W.1
  • 42
    • 33744584654 scopus 로고
    • Induction of Decision Trees
    • J.R. Quinlan Induction of Decision Trees Mach. Learn. 1 1986 81 106
    • (1986) Mach. Learn. , vol.1 , pp. 81-106
    • Quinlan, J.R.1
  • 44
    • 0018015137 scopus 로고
    • Modeling by shortest data description
    • J. Rissanen Modeling by shortest data description Automatica 14 1978 465 471
    • (1978) Automatica , vol.14 , pp. 465-471
    • Rissanen, J.1
  • 45
    • 0024627518 scopus 로고
    • Inferring decision trees using the minimum description length principle
    • J. Ross Quinlan, and R.L. Rivest Inferring decision trees using the minimum description length principle Inf. Comput. 80 1989 227 248
    • (1989) Inf. Comput. , vol.80 , pp. 227-248
    • Ross Quinlan, J.1    Rivest, R.L.2
  • 46
    • 14644422200 scopus 로고    scopus 로고
    • An extended Chi2 algorithm for discretization of real value attributes
    • C.T. Su, and J.H. Hsu An extended Chi2 algorithm for discretization of real value attributes IEEE Trans. Knowl. Data Eng. 17 2005 437 441
    • (2005) IEEE Trans. Knowl. Data Eng. , vol.17 , pp. 437-441
    • Su, C.T.1    Hsu, J.H.2
  • 47
    • 0036565008 scopus 로고    scopus 로고
    • A modified Chi2 algorithm for discretization
    • F.E.H. Tay, and L. Shen A modified Chi2 algorithm for discretization IEEE Trans. Knowl. Data Eng. 14 2002 666 670
    • (2002) IEEE Trans. Knowl. Data Eng. , vol.14 , pp. 666-670
    • Tay, F.E.H.1    Shen, L.2
  • 48
    • 35748943218 scopus 로고    scopus 로고
    • A discretization algorithm based on class-attribute contingency coefficient
    • C.J. Tsai, C.I. Lee, and W.P. Yang A discretization algorithm based on class-attribute contingency coefficient Inf. Sci. 178 2008 714 731
    • (2008) Inf. Sci. , vol.178 , pp. 714-731
    • Tsai, C.J.1    Lee, C.I.2    Yang, W.P.3
  • 50
    • 0035310168 scopus 로고    scopus 로고
    • A comparative study on heuristic algorithms for generating fuzzy decision trees
    • X.Z. Wang, D.S. Yeung, and E.C.C. Tsang A comparative study on heuristic algorithms for generating fuzzy decision trees IEEE Trans. Syst. Man Cybern. B 31 2001 215 226
    • (2001) IEEE Trans. Syst. Man Cybern. B , vol.31 , pp. 215-226
    • Wang, X.Z.1    Yeung, D.S.2    Tsang, E.C.C.3
  • 51
    • 33845679438 scopus 로고    scopus 로고
    • A distribution-index-based discretizer for decision-making with symbolic AI approaches
    • Q.X. Wu, D.A. Bell, G. Prasad, and T.M. McGinnity A distribution-index- based discretizer for decision-making with symbolic AI approaches IEEE Trans. Knowl. Data Eng. 19 2007 17 28
    • (2007) IEEE Trans. Knowl. Data Eng. , vol.19 , pp. 17-28
    • Wu, Q.X.1    Bell, D.A.2    Prasad, G.3    McGinnity, T.M.4
  • 52
    • 1342340355 scopus 로고    scopus 로고
    • A Bayesian discretizer for real-valued attributes
    • X. Wu A Bayesian discretizer for real-valued attributes Comput. J. 39 1996 688 691
    • (1996) Comput. J. , vol.39 , pp. 688-691
    • Wu, X.1
  • 53
    • 79551549748 scopus 로고    scopus 로고
    • HDD: A hypercube division-based algorithm for discretisation
    • P. Yang, J.S. Li, and Y.X. Huang HDD: a hypercube division-based algorithm for discretisation Int. J. Syst. Sci. 42 2011 557 566
    • (2011) Int. J. Syst. Sci. , vol.42 , pp. 557-566
    • Yang, P.1    Li, J.S.2    Huang, Y.X.3
  • 54
    • 58149195307 scopus 로고    scopus 로고
    • Discretization for naive-Bayes learning: Managing discretization bias and variance
    • Y. Yang, and G.I. Webb Discretization for naive-Bayes learning: managing discretization bias and variance Mach. Learn. 74 2009 39 74
    • (2009) Mach. Learn. , vol.74 , pp. 39-74
    • Yang, Y.1    Webb, G.I.2
  • 55
    • 0000868331 scopus 로고
    • Induction of fuzzy decision trees
    • Y. Yuan, and M.J. Shaw Induction of fuzzy decision trees Fuzzy Sets Syst. 69 1995 125 139
    • (1995) Fuzzy Sets Syst. , vol.69 , pp. 125-139
    • Yuan, Y.1    Shaw, M.J.2
  • 57
    • 84901848404 scopus 로고    scopus 로고
    • Comparing different stopping criteria for fuzzy decision tree induction through IDFID3
    • M. Zeinalkhani, and M. Eftekhari Comparing different stopping criteria for fuzzy decision tree induction through IDFID3 Iran. J. Fuzzy Syst. 11 2014 27 48
    • (2014) Iran. J. Fuzzy Syst. , vol.11 , pp. 27-48
    • Zeinalkhani, M.1    Eftekhari, M.2
  • 58
    • 79956205684 scopus 로고    scopus 로고
    • Fuzzy decision tree based on fuzzy-rough technique
    • J.h. Zhai Fuzzy decision tree based on fuzzy-rough technique Soft Comput. 15 2011 1087 1096
    • (2011) Soft Comput. , vol.15 , pp. 1087-1096
    • Zhai, J.H.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.