메뉴 건너뛰기




Volumn 64, Issue 1, 1999, Pages 49-71

Choosing models in model-based clustering and discriminant analysis

Author keywords

Bayesian and classification criteria; Cross validation; Eigenvalue decomposition; Gaussian mixture models; Information

Indexed keywords


EID: 0033236321     PISSN: 00949655     EISSN: None     Source Type: Journal    
DOI: 10.1080/00949659908811966     Document Type: Article
Times cited : (79)

References (24)
  • 2
    • 0016355478 scopus 로고
    • A new look at the statistical identification model
    • Akaike, H. (1974) A New Look at the Statistical Identification Model. IEEE Transactions on Automatic Control, 19, 716-723.
    • (1974) IEEE Transactions on Automatic Control , vol.19 , pp. 716-723
    • Akaike, H.1
  • 3
    • 0027453616 scopus 로고
    • Model-based Gaussian and non-Gaussian clustering
    • Banfield, J. D. and Raftery, A. E. (1993) Model-based Gaussian and non-Gaussian Clustering. Biometrics, 49, 803-821.
    • (1993) Biometrics , vol.49 , pp. 803-821
    • Banfield, J.D.1    Raftery, A.E.2
  • 4
    • 0030326891 scopus 로고    scopus 로고
    • Regularized Gaussian discriminant analysis through Eigenvalue decomposition
    • Bensmail, H. and Celeux, G. (1996) Regularized Gaussian Discriminant Analysis through Eigenvalue Decomposition. Journal of the American Statistical Association, 91, 1743-1748.
    • (1996) Journal of the American Statistical Association , vol.91 , pp. 1743-1748
    • Bensmail, H.1    Celeux, G.2
  • 7
    • 0000308948 scopus 로고    scopus 로고
    • Using the classification likelihood to choose the number of clusters
    • Biernacki, C. and Govaert, G. (1997) Using the Classification Likelihood to Choose the Number of Clusters. Computing Science and Statistics, 29(2), 451-457.
    • (1997) Computing Science and Statistics , vol.29 , Issue.2 , pp. 451-457
    • Biernacki, C.1    Govaert, G.2
  • 8
    • 34250108028 scopus 로고
    • Model selection and Akaike Information Criterion (AIC): The general theory and its analytic extensions
    • Bozdogan, H. (1987) Model Selection and Akaike Information Criterion (AIC): The General Theory and its Analytic Extensions. Psychometrika, 52, 345-370.
    • (1987) Psychometrika , vol.52 , pp. 345-370
    • Bozdogan, H.1
  • 9
    • 0000747992 scopus 로고
    • On the information-based measure of covariance complexity and its application to the evaluation of multivariate linear models
    • Bozdogan, H. (1990) On the Information-Based Measure of Covariance Complexity and its Application to the Evaluation of Multivariate Linear Models. Communications in Statistics, Theory and Methods, 19, 221-278.
    • (1990) Communications in Statistics, Theory and Methods , vol.19 , pp. 221-278
    • Bozdogan, H.1
  • 10
    • 0029305528 scopus 로고
    • Gaussian parsimonious clustering models
    • Celeux, G. and Govaert, G. (1995) Gaussian Parsimonious Clustering Models. Pattern Recognition, 28, 781-793.
    • (1995) Pattern Recognition , vol.28 , pp. 781-793
    • Celeux, G.1    Govaert, G.2
  • 11
    • 0030351528 scopus 로고    scopus 로고
    • An entropy criterion for assessing the number of clusters in a mixture model
    • Celeux, G. and Soromenho, G. (1996) An Entropy Criterion for Assessing the Number of Clusters in a Mixture Model. Journal of Classification, 13, 195-212.
    • (1996) Journal of Classification , vol.13 , pp. 195-212
    • Celeux, G.1    Soromenho, G.2
  • 14
    • 21344489373 scopus 로고
    • Error rates in quadratic discrimination with constraints on the covariance matrices
    • Flury, B. W., Schmid, M. J. and Narayanan, A. (1993) Error Rates in Quadratic Discrimination with Constraints on the Covariance Matrices. Journal of Classification, 11, 101-120.
    • (1993) Journal of Classification , vol.11 , pp. 101-120
    • Flury, B.W.1    Schmid, M.J.2    Narayanan, A.3
  • 15
    • 38049135335 scopus 로고
    • Another interpretation of the EM algorithm for mixture distributions
    • Hathaway, R. J. (1986) Another Interpretation of the EM Algorithm for Mixture Distributions. Statistics and Probability Letters, 4, 53-56.
    • (1986) Statistics and Probability Letters , vol.4 , pp. 53-56
    • Hathaway, R.J.1
  • 17
    • 0001294055 scopus 로고
    • Classification and mixture maximum likelihood approaches to cluster analysis
    • Krishnaiah, P. R. and Kanal, L. (Eds.). Amsterdam: North-Holland
    • McLachlan, G. J. (1982) Classification and Mixture Maximum Likelihood Approaches to Cluster Analysis. In: Handbook of Statistics, 2, Krishnaiah, P. R. and Kanal, L. (Eds.). Amsterdam: North-Holland, 199-208.
    • (1982) Handbook of Statistics , vol.2 , pp. 199-208
    • McLachlan, G.J.1
  • 20
    • 0000783674 scopus 로고    scopus 로고
    • Hypothesis testing and model selection via posterior simulation
    • (Gilks, W. R., Spiegelhalter D. J. and Richardson, S. Eds.), London: Chapman and Hall
    • Raftery, A. E. (1996) Hypothesis Testing and Model Selection via Posterior Simulation. In: Practical Markov Chain Monte Carlo (Gilks, W. R., Spiegelhalter D. J. and Richardson, S. Eds.), London: Chapman and Hall, pp. 163-188.
    • (1996) Practical Markov Chain Monte Carlo , pp. 163-188
    • Raftery, A.E.1
  • 21
    • 18244378520 scopus 로고    scopus 로고
    • Fully Bayesian analysis of mixtures with an unknown number of components
    • Richardson, S. and Green, P. J. (1997) Fully Bayesian Analysis of Mixtures with an Unknown Number of Components (with discussion). Journal of the Royal Statistical Society, B, 59, 731-792.
    • (1997) Journal of the Royal Statistical Society, B , vol.59 , pp. 731-792
    • Richardson, S.1    Green, P.J.2
  • 23
    • 0000120766 scopus 로고
    • Estimating the dimension of a model
    • Schwarz, G. (1978) Estimating the Dimension of a Model. Annals of Statistics, 6, 461-464.
    • (1978) Annals of Statistics , vol.6 , pp. 461-464
    • Schwarz, G.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.