-
1
-
-
0035943456
-
-
A. El Goresy, M. Chen, L. Dubrovinsky, P. Gillet, G. Graup, Science 293, 1467-1470 (2001).
-
(2001)
Science
, vol.293
, pp. 1467-1470
-
-
El Goresy, A.1
Chen, M.2
Dubrovinsky, L.3
Gillet, P.4
Graup, G.5
-
4
-
-
0035839048
-
-
L. Schmidt-Mende et al ., Science 293, 1119-1122 (2001).
-
(2001)
Science
, vol.293
, pp. 1119-1122
-
-
Schmidt-Mende, L.1
-
6
-
-
0030589851
-
-
H. E. Warriner, S. H. J. Idziak, N. L. Slack, P. Davidson, C. R. Safinya, Science 271, 969-973 (1996).
-
(1996)
Science
, vol.271
, pp. 969-973
-
-
Warriner, H.E.1
Idziak, S.H.J.2
Slack, N.L.3
Davidson, P.4
Safinya, C.R.5
-
9
-
-
0032785647
-
-
K. M. Kahn, J. L. Cook, F. Bonar, P. Harcourt, M. Astrom, Sports Med. 27, 393-408 (1999).
-
(1999)
Sports Med.
, vol.27
, pp. 393-408
-
-
Kahn, K.M.1
Cook, J.L.2
Bonar, F.3
Harcourt, P.4
Astrom, M.5
-
13
-
-
0000035952
-
-
K. Kerkam, C. Viney, D. Kaplan, S. Lombardi, Nature 349, 596-598 (1991).
-
(1991)
Nature
, vol.349
, pp. 596-598
-
-
Kerkam, K.1
Viney, C.2
Kaplan, D.3
Lombardi, S.4
-
14
-
-
84901598449
-
-
note
-
For molecular solids, XB depends on the orientational properties of the molecule containing the x-ray-absorbing atom, and in particular depends on the bonding environment of this atom in the molecule. Here, we focus on XB studies at the Br K edge for materials containing brominated organic molecules. In this case, XB behavior can be rationalized simply on the basis of the orientational properties of the C -Br bonds (15, 16).
-
-
-
-
15
-
-
80052842966
-
-
B. A. Palmer, A. Morte-Ródenas, B. M. Kariuki, K. D. M. Harris, S. P. Collins, J. Phys. Chem. Lett 2, 2346-2351 (2011).
-
(2011)
J. Phys. Chem. Lett
, vol.2
, pp. 2346-2351
-
-
Palmer, B.A.1
Morte-Ródenas, A.2
Kariuki, B.M.3
Harris, K.D.M.4
Collins, S.P.5
-
18
-
-
84871048712
-
-
Y. Joly, S. P. Collins, S. Grenier, H. C. N. Tolentino, M. De Santis, Phys. Rev. B 86, 220101 (2012).
-
(2012)
Phys. Rev. B
, vol.86
, pp. 220101
-
-
Joly, Y.1
Collins, S.P.2
Grenier, S.3
Tolentino, H.C.N.4
De Santis, M.5
-
19
-
-
2142803437
-
-
Materials and methods are available as supplementary materials on
-
Materials and methods are available as supplementary materials on Science Online.
-
Science Online
-
-
-
20
-
-
84901629278
-
-
note
-
The spatial resolution of the XB images in the vertical direction (∼13 μm) is limited by the resolution of the charge-coupled device- based detector, and the spatial resolution in the horizontal direction (∼28 μm) is limited by the penetration of the beam into the polarization analyzer [Si(555) reflection]. The latter could be reduced to less than 1 μm by using high-quality crystals of heavier elements.
-
-
-
-
25
-
-
0041305984
-
-
M.-H. Chao, B. M. Kariuki, K. D. M. Harris, S. P. Collins, D. Laundy, Angew. Chem. Int. Ed. 42, 2982 -2985 (2003).
-
(2003)
Angew. Chem. Int. Ed.
, vol.42
, pp. 2982-2985
-
-
Chao, M.-H.1
Kariuki, B.M.2
Harris, K.D.M.3
Collins, S.P.4
Laundy, D.5
-
26
-
-
84901598450
-
-
note
-
For χ = 0°, the crystal c axis is horizontal (x-z plane), parallel to the linearly polarized incident x-ray beam.
-
-
-
-
27
-
-
84858017746
-
-
B. A. Palmer, B. M. Kariuki, A. Morte-Ródenas, K. D. M. Harris, Cryst. Growth Des. 12, 577-582 (2012).
-
(2012)
Cryst. Growth Des.
, vol.12
, pp. 577-582
-
-
Palmer, B.A.1
Kariuki, B.M.2
Morte-Ródenas, A.3
Harris, K.D.M.4
-
28
-
-
84901598451
-
-
note
-
m)] is perpendicular to the x-z plane.
-
-
-
-
29
-
-
84901629279
-
-
note
-
m axis of the crystal in the low-temperature phase is parallel to the laboratory z axis. Hence, because the angle ω (defined in Fig. 1D) is known (27) to be only ∼3.5°, the C- Br bonds in the major domain are very nearly perpendicular to the direction of propagation of the incident x-ray beam.
-
-
-
-
30
-
-
84901598448
-
-
The changes of transmitted x-ray intensity as a function of temperature in this material have been rationalized previously (16) from XB studies using a focused x-ray beam
-
The changes of transmitted x-ray intensity as a function of temperature in this material have been rationalized previously (16) from XB studies using a focused x-ray beam.
-
-
-
-
32
-
-
0033554710
-
-
H. Sirringhaus et al., Nature 401, 685-688 (1999).
-
(1999)
Nature
, vol.401
, pp. 685-688
-
-
Sirringhaus, H.1
-
33
-
-
79952949324
-
-
J. Stasiak, A. Zaffora, M. L. Constantino, A. Pandolfi, G. D. Moggridge, Func. Mater. Lett. 3, 249-252 (2010).
-
(2010)
Func. Mater. Lett.
, vol.3
, pp. 249-252
-
-
Stasiak, J.1
Zaffora, A.2
Constantino, M.L.3
Pandolfi, A.4
Moggridge, G.D.5
-
34
-
-
84901629277
-
-
note
-
In contrast, other techniques (35-39) for imaging materials that use incident x-ray radiation (such as scanning x-ray microscopy and x-ray topography) generally involve scanning a focused x-ray beam across the material (leading to the construction of a spatially resolved image through the analysis of the interaction of the beam with the material at each position of the beam). The time required to record a single image in XBI is clearly much faster than would be the case with a scanning probe. One consequence is that the overall radiation dose received by the sample should be lower in the case of XBI, suggesting that XBI may be advantageous in studying materials that are susceptible to radiation damage.
-
-
-
-
38
-
-
34748847241
-
-
P. W. Hawkes, J. C. H. Spence, Eds. Springer, New York
-
M. Howells, C. Jacobsen, T. Warwick, A. Van den Bos, in Science of Microscopy, P. W. Hawkes, J. C. H. Spence, Eds. (Springer, New York, 2007), pp. 835-926.
-
(2007)
Science of Microscopy
, pp. 835-926
-
-
Howells, M.1
Jacobsen, C.2
Warwick, T.3
Van Den Bos, A.4
-
39
-
-
47749095385
-
-
P. Thibault et al., Science 321, 379-382 (2008).
-
(2008)
Science
, vol.321
, pp. 379-382
-
-
Thibault, P.1
|