메뉴 건너뛰기




Volumn 101, Issue 2, 2014, Pages 253-268

Direct estimation of differential networks

Author keywords

Differential network; Graphical model; High dimensionality; Precision matrix

Indexed keywords


EID: 84901451119     PISSN: 00063444     EISSN: 14643510     Source Type: Journal    
DOI: 10.1093/biomet/asu009     Document Type: Article
Times cited : (142)

References (48)
  • 2
    • 78650373804 scopus 로고    scopus 로고
    • Network medicine: A network-based approach to human disease
    • Barabási, A-L., Gulbahce, N. & Loscalzo, J. (2011). Network medicine: A network-based approach to human disease. Nature Rev. Genet. 12, 56-68.
    • (2011) Nature Rev. Genet. , vol.12 , pp. 56-68
    • Barabási, A.-L.1    Gulbahce, N.2    Loscalzo, J.3
  • 3
    • 0742305866 scopus 로고    scopus 로고
    • Network biology: Understanding the cell's functional organization
    • DOI 10.1038/nrg1272
    • Barabási, A-L. & Oltvai, Z. N. (2004). Network biology: Understanding the cell's functional organization. Nature Rev. Genet. 5, 101-13. (Pubitemid 38160277)
    • (2004) Nature Reviews Genetics , vol.5 , Issue.2 , pp. 101-113
    • Barabasi, A.-L.1    Oltvai, Z.N.2
  • 4
    • 62449168519 scopus 로고    scopus 로고
    • TRAIL agonists on clinical trials for cancer therapy: The promises and the challenges
    • Bellail, A. C., Qi, L., Mulligan, P., Chhabra, V. & Hao, C. (2009). TRAIL agonists on clinical trials for cancer therapy: The promises and the challenges. Rev. Recent Clin. Trials 4, 34-41.
    • (2009) Rev. Recent Clin. Trials , vol.4 , pp. 34-41
    • Bellail, A.C.1    Qi, L.2    Mulligan, P.3    Chhabra, V.4    Hao, C.5
  • 5
    • 80051762104 scopus 로고    scopus 로고
    • Distributed optimization and statistical learning via the alternating direction method of multipliers
    • Boyd, S., Parikh, N., Chu, E., Peleato, B. & Eckstein, J. (2011). Distributed optimization and statistical learning via the alternating direction method of multipliers. Foundat. Trends Mach. Learn. 3, 1-122.
    • (2011) Foundat. Trends Mach. Learn. , Issue.3 , pp. 1-122
    • Boyd, S.1    Parikh, N.2    Chu, E.3    Peleato, B.4    Eckstein, J.5
  • 6
    • 84862957781 scopus 로고    scopus 로고
    • A direct estimation approach to sparse linear discriminant analysis
    • Cai, T. & Liu, W. (2011). A direct estimation approach to sparse linear discriminant analysis. J. Am. Statist. Assoc. 106, 1566-77.
    • (2011) J. Am. Statist. Assoc. , Issue.106 , pp. 1566-1577
    • Cai, T.1    Liu, W.2
  • 7
    • 79960110811 scopus 로고    scopus 로고
    • A constrained-1 minimization approach to sparse precision matrix estimation
    • Cai, T., Liu, W. & Luo, X. (2011). A constrained-1 minimization approach to sparse precision matrix estimation. J. Am. Statist. Assoc. 106, 594-607.
    • (2011) J. Am. Statist. Assoc. , Issue.106 , pp. 594-607
    • Cai, T.1    Liu, W.2    Luo, X.3
  • 8
    • 77955509952 scopus 로고    scopus 로고
    • Shifting inequality and recovery of sparse signals
    • Cai, T., Wang, L. & Xu, G. (2010). Shifting inequality and recovery of sparse signals. IEEE Trans. Sig. Proces. 58, 1300-8.
    • (2010) IEEE Trans. Sig. Proces. , vol.58 , pp. 1300-1308
    • Cai, T.1    Wang, L.2    Xu, G.3
  • 9
    • 77953762405 scopus 로고    scopus 로고
    • Stable recovery of sparse signals and an oracle inequality
    • Cai, T., Wang, L. & Xu, G. (2010). Stable recovery of sparse signals and an oracle inequality. IEEE Trans. Info. Theory 56, 3516-22.
    • (2010) IEEE Trans. Info. Theory , vol.56 , pp. 3516-3522
    • Cai, T.1    Wang, L.2    Xu, G.3
  • 10
    • 67650122784 scopus 로고    scopus 로고
    • On recovery of sparse signals via-1 minimization
    • Cai, T., Xu, G. & Zhang, J. (2009). On recovery of sparse signals via-1 minimization. IEEE Trans. Info. Theory 55, 3388-97.
    • (2009) IEEE Trans. Info. Theory , vol.55 , pp. 3388-3397
    • Cai, T.1    Xu, G.2    Zhang, J.3
  • 12
    • 84893766307 scopus 로고    scopus 로고
    • The joint graphical lasso for inverse covariance estimation across multiple classes
    • Danaher, P., Wang, P. & Witten, D. M. (2014). The joint graphical lasso for inverse covariance estimation across multiple classes. J. R. Statist. Soc. B 76, 373-97.
    • (2014) J. R. Statist. Soc. B , vol.76 , pp. 373-397
    • Danaher, P.1    Wang, P.2    Witten, D.M.3
  • 13
    • 77953913791 scopus 로고    scopus 로고
    • From 'differential expression' to 'differential networking'- identification of dysfunctional regulatory networks in diseases
    • De LA Fuente, A. (2010). From 'differential expression' to 'differential networking'-identification of dysfunctional regulatory networks in diseases. Trends Genet. 26, 326-33.
    • (2010) Trends Genet , vol.26 , pp. 326-333
    • De, L.A.1    Fuente, A.2
  • 14
    • 0035504028 scopus 로고    scopus 로고
    • Uncertainty principles and ideal atomic decomposition
    • DOI 10.1109/18.959265, PII S0018944801089465
    • Donoho, D. & Huo, X. (2001). Uncertainty principles and ideal atomic decomposition. IEEE Trans. Info. Theory 47, 2845-62. (Pubitemid 33053488)
    • (2001) IEEE Transactions on Information Theory , vol.47 , Issue.7 , pp. 2845-2862
    • Donoho, D.L.1    Huo, X.2
  • 15
    • 79960325408 scopus 로고    scopus 로고
    • Networks for systems biology: Conceptual connection of data and function
    • Emmert-Streib, F. & Dehmer, M. (2011). Networks for systems biology: Conceptual connection of data and function. IET Syst. Biol. 5, 185-207.
    • (2011) IET Syst. Biol. , vol.5 , pp. 185-207
    • Emmert-Streib, F.1    Dehmer, M.2
  • 16
    • 45849134070 scopus 로고    scopus 로고
    • Sparse inverse covariance estimation with the graphical lasso
    • Friedman, J. H., Hastie, T. J. & Tibshirani, R. J. (2008). Sparse inverse covariance estimation with the graphical lasso. Biostatistics 9, 432-41.
    • (2008) Biostatistics , vol.9 , pp. 432-441
    • Friedman, J.H.1    Hastie, T.J.2    Tibshirani, R.J.3
  • 17
    • 79952164560 scopus 로고    scopus 로고
    • Joint estimation of multiple graphical models
    • Guo, J., Levina, E., Michailidis, G. & Zhu, J. (2011). Joint estimation of multiple graphical models. Biometrika 98, 1-15.
    • (2011) Biometrika , vol.98 , pp. 1-15
    • Guo, J.1    Levina, E.2    Michailidis, G.3    Zhu, J.4
  • 18
    • 84901476645 scopus 로고    scopus 로고
    • Jointly interventional and observational data: Estimation of interventional Markov equivalence classes of directed acyclic graphs
    • Hauser, A. & B̈uhlmann, P. (2014). Jointly interventional and observational data: Estimation of interventional Markov equivalence classes of directed acyclic graphs. J. R. Statist. Soc. B. To appear.
    • (2014) J. R. Statist. Soc. B. To appear
    • Hauser, A.1    B̈uhlmann, P.2
  • 19
    • 66249102619 scopus 로고    scopus 로고
    • A group bridge approach for variable selection
    • Huang, J., Ma, S., Xie, H. & Zhang, C-H. (2009). A group bridge approach for variable selection. Biometrika 96, 339-55.
    • (2009) Biometrika , vol.96 , pp. 339-355
    • Huang, J.1    Ma, S.2    Xie, H.3    Zhang, C.-H.4
  • 20
    • 67049159812 scopus 로고    scopus 로고
    • A differential wiring analysis of expression data correctly identifies the gene containing the causal mutation
    • Hudson, N. J., Reverter, A. & Dalrymple, B. P. (2009). A differential wiring analysis of expression data correctly identifies the gene containing the causal mutation. PLoS Comp. Biol. 5, e1000382.
    • (2009) PLoS Comp. Biol. , vol.5
    • Hudson, N.J.1    Reverter, A.2    Dalrymple, B.P.3
  • 21
    • 84856094560 scopus 로고    scopus 로고
    • Differential network biology
    • Ideker, T. & Krogan, N. (2012). Differential network biology. Molec. Syst. Biol. 8, 565.
    • (2012) Molec. Syst. Biol. , vol.8 , pp. 565
    • Ideker, T.1    Krogan, N.2
  • 22
    • 52649109068 scopus 로고    scopus 로고
    • The TRAIL apoptotic pathway in cancer onset, progression and therapy
    • Johnstone, R. W., Frew, A. J. & Smyth, M. J. (2008). The TRAIL apoptotic pathway in cancer onset, progression and therapy. Nature Rev. Cancer 8, 782-98.
    • (2008) Nature Rev. Cancer , vol.8 , pp. 782-798
    • Johnstone, R.W.1    Frew, A.J.2    Smyth, M.J.3
  • 23
    • 33947524259 scopus 로고    scopus 로고
    • Estimating high-dimensional directed acyclic graphs with the PC-Algorithm
    • Kalisch, M. & B̈uhlmann, P. (2007). Estimating high-dimensional directed acyclic graphs with the PC-Algorithm. J. Mach. Learn. Res. 8, 613-36. (Pubitemid 46473523)
    • (2007) Journal of Machine Learning Research , vol.8 , pp. 613-636
    • Kalisch, M.1    Buhlmann, P.2
  • 24
    • 84858983547 scopus 로고    scopus 로고
    • KEGG for integration and interpretation of large-scale molecular data sets
    • Kanehisa, M., Goto, S., Sato, Y., Furumichi, M. & Tanabe, M. (2012). KEGG for integration and interpretation of large-scale molecular data sets. Nucleic Acids Res. 40, D109-14.
    • (2012) Nucleic Acids Res , vol.40
    • Kanehisa, M.1    Goto, S.2    Sato, Y.3    Furumichi, M.4    Tanabe, M.5
  • 25
    • 84875419233 scopus 로고    scopus 로고
    • Meeting the challenge of ascites in ovarian cancer: New avenues for therapy and research
    • Kipps, E., Tan, D. S. P. & Kaye, S. B. (2013). Meeting the challenge of ascites in ovarian cancer: New avenues for therapy and research. Nature Rev. Cancer, 273-82.
    • (2013) Nature Rev. Cancer , pp. 273-282
    • Kipps, E.1    Tan, D.S.P.2    Kaye, S.B.3
  • 29
    • 56449113372 scopus 로고    scopus 로고
    • Sup-norm convergence rate and sign concentration property of lasso and Dantzig estimators
    • Lounici, K. (2008). Sup-norm convergence rate and sign concentration property of lasso and Dantzig estimators. Electron. J. Statist. 2, 90-102.
    • (2008) Electron. J. Statist. , vol.2 , pp. 90-102
    • Lounici, K.1
  • 30
    • 69949166983 scopus 로고    scopus 로고
    • Estimating high-dimensional intervention effects from observational data
    • Maathuis, M. H., Kalisch, M. & B̈uhlmann, P. (2009). Estimating high-dimensional intervention effects from observational data. Ann. Statist. 37, 3133-64.
    • (2009) Ann. Statist. , vol.37 , pp. 3133-3164
    • Maathuis, M.H.1    Kalisch, M.2    B̈uhlmann, P.3
  • 32
  • 33
    • 33747163541 scopus 로고    scopus 로고
    • High-dimensional graphs and variable selection with the Lasso
    • DOI 10.1214/009053606000000281
    • Meinshausen, N. & B̈uhlmann, P. (2006). High-dimensional graphs and variable selection with the lasso. Ann. Statist. 34, 1436-62. (Pubitemid 44231168)
    • (2006) Annals of Statistics , vol.34 , Issue.3 , pp. 1436-1462
    • Meinshausen, N.1    Buhlmann, P.2
  • 35
    • 0038718854 scopus 로고    scopus 로고
    • The structure and function of complex networks
    • Newman, M. E. (2003). The structure and function of complex networks. SIAM Rev. 45, 167-256.
    • (2003) SIAM Rev , vol.45 , pp. 167-256
    • Newman, M.E.1
  • 39
    • 84863304598 scopus 로고    scopus 로고
    • R DEVELOPMENT CORE TEAM. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0.
    • R DEVELOPMENT CORE TEAM (2014). R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0. http://www.R-project.org.
    • (2014) R: A Language and Environment for Statistical Computing
  • 40
    • 81855189799 scopus 로고    scopus 로고
    • Model selection in Gaussian graphical models: High-dimensional consistency of-1-regularized MLE
    • New York: Curran Associates
    • Ravikumar, P. K., Raskutti, G., Wainwright, M. J. & Yu, B. (2008). Model selection in Gaussian graphical models: High-dimensional consistency of-1-regularized MLE. In Adv. Neural Info. Proces. Syst. 21. New York: Curran Associates, pp. 1329-36.
    • (2008) Adv. Neural Info. Proces. Syst. , vol.21 , pp. 1329-1336
    • Ravikumar, P.K.1    Raskutti, G.2    Wainwright, M.J.3    Yu, B.4
  • 43
    • 35948950248 scopus 로고    scopus 로고
    • The inhibitor of apoptosis proteins as therapeutic targets in cancer
    • DOI 10.1158/1078-0432.CCR-07-0729
    • Vucic, D. & Fairbrother, W. J. (2007). The inhibitor of apoptosis proteins as therapeutic targets in cancer. Clin. Cancer Res. 13, 5995-6000. (Pubitemid 350075054)
    • (2007) Clinical Cancer Research , vol.13 , Issue.20 , pp. 5995-6000
    • Vucic, D.1    Fairbrother, W.J.2
  • 44
    • 66249113503 scopus 로고    scopus 로고
    • Hierarchically penalized Cox regression with grouped variables
    • Wang, S., Nan, B., Zhu, N. & Zhu, J. (2009). Hierarchically penalized Cox regression with grouped variables. Biometrika 96, 307-22.
    • (2009) Biometrika , vol.96 , pp. 307-322
    • Wang, S.1    Nan, B.2    Zhu, N.3    Zhu, J.4
  • 45
    • 9144234147 scopus 로고    scopus 로고
    • TRAIL and its receptors as targets for cancer therapy
    • DOI 10.1111/j.1349-7006.2004.tb02181.x
    • Yagita, H., Takeda, K., Hayakawa, Y., Smyth, M. J. & OKUMURA, K. (2004). TRAIL and its receptors as targets for cancer therapy. Cancer Sci. 95, 777-83. (Pubitemid 39545582)
    • (2004) Cancer Science , vol.95 , Issue.10 , pp. 777-783
    • Yagita, H.1    Takeda, K.2    Hayakawa, Y.3    Smyth, M.J.4    Okumura, K.5
  • 46
    • 77956916683 scopus 로고    scopus 로고
    • Sparse inverse covariance matrix estimation via linear programming
    • Yuan, M. (2010). Sparse inverse covariance matrix estimation via linear programming. J. Mach. Learn. Res. 11, 2261-86.
    • (2010) J. Mach. Learn. Res. , vol.11 , pp. 2261-2286
    • Yuan, M.1
  • 48
    • 33845263263 scopus 로고    scopus 로고
    • On model selection consistency of Lasso
    • Zhao, P. & Yu, B. (2006). On model selection consistency of lasso. J.Mach. Learn. Res. 7, 2541-63. (Pubitemid 44866738)
    • (2006) Journal of Machine Learning Research , vol.7 , pp. 2541-2563
    • Zhao, P.1    Yu, B.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.