메뉴 건너뛰기




Volumn , Issue , 2014, Pages

Binary linear classification and feature selection via generalized approximate message passing

Author keywords

[No Author keywords available]

Indexed keywords

INFORMATION SCIENCE;

EID: 84901445963     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/CISS.2014.6814160     Document Type: Conference Paper
Times cited : (8)

References (31)
  • 2
    • 2942731012 scopus 로고    scopus 로고
    • An extensive empirical study of feature selection metrics for text classification
    • G. Forman, "An extensive empirical study of feature selection metrics for text classification," J. Mach. Learn. Res., vol. 3, pp. 1289-1305, 2003.
    • (2003) J. Mach. Learn. Res , vol.3 , pp. 1289-1305
    • Forman, G.1
  • 3
    • 0035964792 scopus 로고    scopus 로고
    • Distributed and overlapping representations of faces and objects in ventral temporal cortex
    • DOI 10.1126/science.1063736
    • J. V. Haxby, M. I. Gobbini, M. L. Furey, A. Ishai, J. L. Schouten, and P. Pietrini, "Distributed and overlapping representations of faces and objects in ventral temporal cortex," Science, vol. 293, pp. 2425-2430, Sept. 2001. (Pubitemid 32917318)
    • (2001) Science , vol.293 , Issue.5539 , pp. 2425-2430
    • Haxby, J.V.1    Gobbini, M.I.2    Furey, M.L.3    Ishai, A.4    Schouten, J.L.5    Pietrini, P.6
  • 4
    • 78650962780 scopus 로고    scopus 로고
    • Decoding word and category-specific spatiotamporaj representations from meg and eeg
    • A. M. Chan, E. Halgren, K Marinkovic, and S. S. Cash, "Decoding word and category-specific spatiotamporaJ representations from MEG and EEG," Neurolmage, vol. 54, pp. 3028-3039, 2011.
    • (2011) Neurolmage , vol.54 , pp. 3028-3039
    • Chan, A.M.1    Halgren, E.2    Marinkovic, K.3    Cash, S.S.4
  • 5
    • 77951976541 scopus 로고    scopus 로고
    • Spase logistic regression for whole-brain classification of fmri data
    • S. Ryali, K Supekar, D. A. Abrams, and V. Menon, "Spase logistic regression for whole-brain classification of fMRI data," Neurolmage, vol. 51, pp. 752-764, 2010.
    • (2010) Neurolmage , vol.51 , pp. 752-764
    • Ryali, S.1    Supekar, K.2    Abrams, D.A.3    Menon, V.4
  • 7
    • 0003076895 scopus 로고    scopus 로고
    • Feature selection for highdimensional genomic microarray data
    • E. P. Xing, M. I. Jordan, and R. M. Karp, "Feature selection for highdimensional genomic microarray data," in Int'l Wkshp. Mach. Learn., pp. 601-608, 2001.
    • (2001) Int'l Wkshp. Mach. Learn , pp. 601-608
    • Xing, E.P.1    Jordan, M.I.2    Karp, R.M.3
  • 10
    • 80054799706 scopus 로고    scopus 로고
    • Generalized approximate message passing for estimation with random linear mixing
    • (St. P etersburg, Russia), Aug., (Full version at arXiv:JOJO.5i4i)
    • S. Rangan, "Generalized approximate message passing for estimation with random linear mixing," in Proc. IEEE Int'l Symp. Inform. Theory, (St. P etersburg, Russia), pp. 2168-2172, Aug. 2011. (Full version at arXiv:JOJO.5i4i).
    • (2011) Proc. IEEE Int'l Symp. Inform. Theory , pp. 2168-2172
    • Rangan, S.1
  • 12
    • 84898964205 scopus 로고    scopus 로고
    • A revolution: Belief propagation in graphs with cycles
    • B. J. Frey and D. J. C. MacKay, "A revolution: Belief propagation in graphs with cycles," Adv. Neural Info. Process. Sys., pp. 479-485,1 998.
    • (1998) Adv. Neural Info. Process. Sys , pp. 479-485
    • Frey, B.J.1    Mackay, D.J.C.2
  • 15
    • 85032780651 scopus 로고    scopus 로고
    • An introduction to factor graphs
    • Jan
    • H.-A. Loeliger, "An introduction to factor graphs," IEEE Signal Process. Mag., vol. 21, pp. 28-41, Jan. 2004.
    • (2004) IEEE Signal Process. Mag , vol.21 , pp. 28-41
    • Loeliger, H.-A.1
  • 18
    • 77953689056 scopus 로고    scopus 로고
    • Turbo reconstruction of structured sparse signals
    • (Princeton, NJ), Mar
    • P. Schniter, "Turbo reconstruction of structured sparse signals," in Conf. on Information Sciences and Systems (CiSS), (Princeton, NJ), pp. 1-6, Mar. 2010.
    • (2010) Conf. on Information Sciences and Systems (CiSS) , pp. 1-6
    • Schniter, P.1
  • 19
    • 84883317968 scopus 로고    scopus 로고
    • Expectation-maximization gaussian-mixture approximate message passing
    • Oct
    • J. P. Vila and P. Schniter, "Expectation-Maximization Gaussian-mixture approximate message passing," IEEE Trans. Signal Process., vol. 61, pp. 4658-4672, Oct. 2013.
    • (2013) IEEE Trans. Signal Process , vol.61 , pp. 4658-4672
    • Vila, J.P.1    Schniter, P.2
  • 21
    • 16244401458 scopus 로고    scopus 로고
    • Regularization and variable selection via the elastic net;'
    • H. Zou and T. Hastie, "Regularization and variable selection via the elastic net;' J. Roy. Statist. Soc., B, vol. 67, no. 2, pp. 301-320, 2005.
    • (2005) J. Roy. Statist. Soc., B , vol.67 , Issue.2 , pp. 301-320
    • Zou, H.1    Hastie, T.2
  • 22
    • 0033886806 scopus 로고    scopus 로고
    • Text classification from labeled and unlabeled documents using em
    • A. K Nigam, Kand McCallum, S. Thrun, and T. Mitchell, "Text classification from labeled and unlabeled documents using EM," Machine Learning, vol. 39, pp. 103-134, 2000. (Pubitemid 30594822)
    • (2000) Machine Learning , vol.39 , Issue.2 , pp. 103-134
    • Nigam, K.1    McCallum, A.K.2    Thrun, S.3    Mitchell, T.4
  • 23
    • 84894154978 scopus 로고    scopus 로고
    • An empiricaj-bayes approach to recovering linearly constrained non-negative sparse signajs
    • (Saint Martin), Dec., (Full version at arXiv:13JO.2806)
    • J. Vila and P. Schniter, "An empiricaJ-Bayes approach to recovering linearly constrained non-negative sparse signaJs," in Proc. IEEE Workshop Compo Adv. Multi-Sensor Adaptive Process., (Saint Martin), Dec. 2013. (Full version at arXiv:13JO.2806).
    • (2013) Proc. IEEE Workshop Compo Adv. Multi-Sensor Adaptive Process
    • Vila, J.1    Schniter, P.2
  • 24
    • 0002629270 scopus 로고
    • Maximum likelihood from incomplete data via the em algorithm
    • A. P. Dempster, N. M. Laird, and D. B. Rubin, "Maximum likelihood from incomplete data via the EM algorithm," J. Roy. Statist. Soc., B, vol. 39, pp. 1-38, 1977.
    • (1977) J. Roy. Statist. Soc., B , vol.39 , pp. 1-38
    • Dempster, A.P.1    Laird, N.M.2    Rubin, D.B.3
  • 25
    • 84877769740 scopus 로고    scopus 로고
    • Approximate message passing with consistent parameter estimation and applications to sparse learning
    • (Lake Tahoe, NV), Dec., (Full version at arXiv:1207.3859)
    • U. S. Kamilov, S. Rangan, A. K. Fletcher, and M. Unser, "Approximate message passing with consistent parameter estimation and applications to sparse learning," in Proc. Neural Inform. Process. Syst. Conf., (Lake Tahoe, NV), Dec. 2012. (Full version at arXiv:1207.3859).
    • (2012) Proc. Neural Inform. Process. Syst. Conf
    • Kamilov, U.S.1    Rangan, S.2    Fletcher, A.K.3    Unser, M.4
  • 26
    • 84876811202 scopus 로고    scopus 로고
    • RCVl: A new benchmark collection for text categorization research
    • D. D. Lewis, Y. Yang, T. G. Rose, and F. Li, "RCVl: A new benchmark collection for text categorization research," J. Mach. Learn. Res., vol. 5, pp. 361-397, 2004.
    • (2004) J. Mach. Learn. Res , vol.5 , pp. 361-397
    • Lewis, D.D.1    Yang, Y.2    Rose, T.G.3    Li, F.4
  • 27
    • 79551500651 scopus 로고    scopus 로고
    • A comparison of optimization methods and software for large-scaje ll-regularized linear classification
    • G.-X. Yuan,K .-W. Chang,C .-J. Hsieh,a nd c.-J. Lin," A comparison of optimization methods and software for large-scaJe Ll-regularized linear classification," J. Mach. Learn. Res., vol. 11, pp. 3183-3234, 2010.
    • (2010) J. Mach. Learn. Res , vol.11 , pp. 3183-3234
    • Yuank, G.-X.1    Changc, .-W.2    Nd Hsieha, .-J.3    Lin, C.-J.4
  • 28
    • 34547982357 scopus 로고    scopus 로고
    • Trust region newton methods for large-scaje logistic regression
    • (Corvallis, OR)
    • C. Lin, R. C. Weng, and S. S. Keerthi, "Trust region Newton methods for large-scaJe logistic regression," in Proc. 24th Int'l Conf. Mach. Learn., (Corvallis, OR), pp. 561-568, 2007.
    • (2007) Proc. 24th Int'l Conf. Mach. Learn , pp. 561-568
    • Lin, C.1    Weng, R.C.2    Keerthi, S.S.3
  • 29
    • 0033436056 scopus 로고    scopus 로고
    • Newton's method for large-scaje bound constrained problems
    • C. J. Lin and J. I. More, "Newton's method for large-scaJe bound constrained problems," SIAM J. Optim., vol. 9, pp. 1100-1127, 1999.
    • (1999) SIAM J. Optim , vol.9 , pp. 1100-1127
    • Lin, C.J.1    More, J.I.2
  • 30
    • 84856004485 scopus 로고    scopus 로고
    • Templates for convex cone problems with applications to sparse signaj recovery
    • S. R. Becker, E. J. Candes, and M. C. Grant, "Templates for convex cone problems with applications to sparse signaJ recovery," Math. Prog. Comp., vol. 3, no. 3, pp. 165-218,2011.
    • (2011) Math. Prog. Comp , vol.3 , Issue.3 , pp. 165-218
    • Becker, S.R.1    Candes, E.J.2    Grant, M.C.3
  • 31
    • 84875716638 scopus 로고    scopus 로고
    • Compressive phase retrievaj via generalized approximate message passing
    • (Monticello, IL), Oct
    • P. Schniter and S. Rangan, "Compressive phase retrievaJ via generalized approximate message passing," in Allerton Conf. Commun., Control, Comput., (Monticello, IL), Oct. 2012.
    • (2012) Allerton Conf. Commun., Control, Comput
    • Schniter, P.1    Rangan, S.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.