메뉴 건너뛰기




Volumn 9, Issue 5, 2014, Pages

A novel strategy for gene selection of microarray data based on gene-to-class sensitivity information

Author keywords

[No Author keywords available]

Indexed keywords

ACCURACY; ARTICLE; ARTIFICIAL NEURAL NETWORK; CLASSIFICATION; DATA ANALYSIS; FILTRATION; GENE CLUSTER; GENE IDENTIFICATION; GENE TO CLASS SENSITIVITY INFORMATION; GENETIC PROCEDURES; GENETIC SCREENING; HYBRID GENE; HYBRID GENE SELECTION METHOD; MEDICAL INFORMATION; MICROARRAY ANALYSIS; PROCESS OPTIMIZATION; STATISTICAL ANALYSIS; STATISTICAL PARAMETERS; ANIMAL; ARABIDOPSIS; COMPUTER PROGRAM; DNA MICROARRAY; HUMAN; PROCEDURES;

EID: 84901379660     PISSN: None     EISSN: 19326203     Source Type: Journal    
DOI: 10.1371/journal.pone.0097530     Document Type: Article
Times cited : (25)

References (52)
  • 1
    • 36349010718 scopus 로고    scopus 로고
    • Gene selection for classification of microarray data based on the Bayes error
    • Zhang JG, Deng HW (2007) Gene selection for classification of microarray data based on the Bayes error. BMC Bioinformatics 8: 370-378.
    • (2007) BMC Bioinformatics , vol.8 , pp. 370-378
    • Zhang, J.G.1    Deng, H.W.2
  • 2
    • 77951082777 scopus 로고    scopus 로고
    • Bayesian approach to transforming public gene expression repositories into disease diagnosis databases
    • Huang HY, Liu CC, Zhou XH (2010) Bayesian approach to transforming public gene expression repositories into disease diagnosis databases. Proc. Natl. Acad. Sci. 107: 6823-6828.
    • (2010) Proc. Natl. Acad. Sci. , vol.107 , pp. 6823-6828
    • Huang, H.Y.1    Liu, C.C.2    Zhou, X.H.3
  • 4
    • 84876717841 scopus 로고    scopus 로고
    • An introduction to some new results in bioinformatics and computational biology
    • Wong L (2013) An introduction to some new results in bioinformatics and computational biology. Journal of Bioinformatics and Computational Biology 11: 1301001.
    • (2013) Journal of Bioinformatics and Computational Biology , vol.11 , pp. 1301001
    • Wong, L.1
  • 5
    • 68149171307 scopus 로고    scopus 로고
    • SlimPLS: A method for feature selection in gene expression-based disease classification
    • Gutkin M, Shamir R, Dror G (2009) SlimPLS: A method for feature selection in gene expression-based disease classification. PLoS ONE 4: e6416.
    • (2009) PLoS ONE , vol.4
    • Gutkin, M.1    Shamir, R.2    Dror, G.3
  • 6
    • 13244258381 scopus 로고    scopus 로고
    • Iterative class discovery and feature selection using Minimal Spanning Trees
    • Varma S, Simon R (2004) Iterative class discovery and feature selection using Minimal Spanning Trees. BMC Bioinformatics 5: 126-134.
    • (2004) BMC Bioinformatics , vol.5 , pp. 126-134
    • Varma, S.1    Simon, R.2
  • 7
    • 84866019568 scopus 로고    scopus 로고
    • Identification of genes for complex diseases using integrated analysis of multiple types of genomic data
    • Cao HB, Lei SF, Deng HW, Wang YP (2012) Identification of genes for complex diseases using integrated analysis of multiple types of genomic data. PLoS ONE 7: e42755.
    • (2012) PLoS ONE , vol.7
    • Cao, H.B.1    Lei, S.F.2    Deng, H.W.3    Wang, Y.P.4
  • 8
    • 77949506233 scopus 로고    scopus 로고
    • Feature selection and classification of MAQC-II breast cancer and multiple myeloma microarray gene expression data
    • Liu QZ, Sung AH, Chen ZX, Liu JZ, Huang XD, et al. (2009) Feature selection and classification of MAQC-II breast cancer and multiple myeloma microarray gene expression data. PLoS ONE 4: e8250.
    • (2009) PLoS ONE , vol.4
    • Liu, Q.Z.1    Sung, A.H.2    Chen, Z.X.3    Liu, J.Z.4    Huang, X.D.5
  • 9
    • 0031381525 scopus 로고    scopus 로고
    • Wrappers for feature subset selection
    • Kohavi G, John R (1997) Wrappers for feature subset selection. Artificial Intelligence 97: 273-324.
    • (1997) Artificial Intelligence , vol.97 , pp. 273-324
    • Kohavi, G.1    John, R.2
  • 10
    • 35748932917 scopus 로고    scopus 로고
    • A review of feature selection techniques in bioinformatics
    • DOI 10.1093/bioinformatics/btm344
    • Saeys Y, Inza I, Larranaga P (2007) A review of feature selection techniques in bioinformatics. Bioinformatics 23: 2507-2517. (Pubitemid 350048351)
    • (2007) Bioinformatics , vol.23 , Issue.19 , pp. 2507-2517
    • Saeys, Y.1    Inza, I.2    Larranaga, P.3
  • 11
    • 64749086339 scopus 로고    scopus 로고
    • A wrapper method for feature selection using support vector machines
    • Maldonado S, Weber R (2009) A wrapper method for feature selection using support vector machines. Information Sciences 179: 2208-2217.
    • (2009) Information Sciences , vol.179 , pp. 2208-2217
    • Maldonado, S.1    Weber, R.2
  • 12
    • 78751648113 scopus 로고    scopus 로고
    • A GRASP algorithm for fast hybrid (filter-wrapper) feature subset selection in high-dimensional datasets
    • Bermejo P, Gamez JA, Puerta JM (2011) A GRASP algorithm for fast hybrid (filter-wrapper) feature subset selection in high-dimensional datasets. Pattern Recognition 32: 701-711.
    • (2011) Pattern Recognition , vol.32 , pp. 701-711
    • Bermejo, P.1    Gamez, J.A.2    Puerta, J.M.3
  • 16
    • 84869795463 scopus 로고    scopus 로고
    • Exploiting genomic knowledge in optimising molecular breeding programmes: Algorithms from evolutionary computing
    • O'Hagan S, Knowles J, Kell DB (2012) Exploiting genomic knowledge in optimising molecular breeding programmes: Algorithms from evolutionary computing. PLoS ONE 7: e48862.
    • (2012) PLoS ONE , vol.7
    • O'Hagan, S.1    Knowles, J.2    Kell, D.B.3
  • 17
    • 84862059143 scopus 로고    scopus 로고
    • An Improved PSO algorithm for generating protective SNP barcodes in breast cancer
    • Chuang LY, Lin YD, Chang HW, Yang CH (2012) An Improved PSO algorithm for generating protective SNP barcodes in breast cancer. PLoS ONE 7: e37018.
    • (2012) PLoS ONE , vol.7
    • Chuang, L.Y.1    Lin, Y.D.2    Chang, H.W.3    Yang, C.H.4
  • 18
    • 79959622988 scopus 로고    scopus 로고
    • Particle swarm optimization with reinforcement learning for the prediction of CpG islands in the human genome
    • Chuang LY, Huang HC, Lin MC, Yang CH (2011) Particle swarm optimization with reinforcement learning for the prediction of CpG islands in the human genome. PLoS ONE 6: e21036.
    • (2011) PLoS ONE , vol.6
    • Chuang, L.Y.1    Huang, H.C.2    Lin, M.C.3    Yang, C.H.4
  • 20
    • 33847127850 scopus 로고    scopus 로고
    • A combination of modified particle swarm optimization algorithm and support vector machine for gene selection and tumor classification
    • DOI 10.1016/j.talanta.2006.07.047, PII S0039914006005455
    • Shen Q, Shi WM, Kong W, Ye BX (2007) A combination of modified particle optimization algorithm and support vector machine for gene selection and tumor classification. Talanta 71: 1679-1683. (Pubitemid 46282844)
    • (2007) Talanta , vol.71 , Issue.4 , pp. 1679-1683
    • Shen, Q.1    Shi, W.-M.2    Kong, W.3    Ye, B.-X.4
  • 21
    • 0036139278 scopus 로고    scopus 로고
    • Gene selection for sample classification based on gene expression data: Study of sensitivity to choice of parameters of the GA/KNN method
    • Li LP, Weinberg CR, Darden TA, Pedersen LG (2001) Gene selection for sample classification based on gene expression data: study of sensitivity to choice of parameters of the GA/KNN method. Bioinformatics 17: 1131-1142. (Pubitemid 33735339)
    • (2001) Bioinformatics , vol.17 , Issue.12 , pp. 1131-1142
    • Li, L.1    Weinberg, C.R.2    Darden, T.A.3    Pedersen, L.G.4
  • 26
  • 27
    • 33745903481 scopus 로고    scopus 로고
    • Extreme learning machine: Theory and applications
    • Huang GB, Zhu QY, Siew CK (2006) Extreme learning machine: theory and applications. Neurocomputing 70: 489-501.
    • (2006) Neurocomputing , vol.70 , pp. 489-501
    • Huang, G.B.1    Zhu, Q.Y.2    Siew, C.K.3
  • 28
    • 84901315131 scopus 로고    scopus 로고
    • A hybrid gene selection and classification approach for microarray data based on clustering and PSO
    • Yang SX, Han F, Guan J (2013) A hybrid gene selection and classification approach for microarray data based on clustering and PSO. Communications in Computer and Information Science 375: 88-93.
    • (2013) Communications in Computer and Information Science , vol.375 , pp. 88-93
    • Yang, S.X.1    Han, F.2    Guan, J.3
  • 29
    • 43249119791 scopus 로고    scopus 로고
    • An efficient k-means clustering algorithm
    • Zalik KR (2008) An efficient k-means clustering algorithm. Pattern Recognition Letters 29: 1385-1391.
    • (2008) Pattern Recognition Letters , vol.29 , pp. 1385-1391
    • Zalik, K.R.1
  • 32
    • 33748432957 scopus 로고    scopus 로고
    • Improved extreme learning machine for function approximation by encoding a priori information
    • DOI 10.1016/j.neucom.2006.02.013, PII S0925231206001317, Brain Inspired Cognitive Systems Selected papers from the 1st International Conference on Brain Inspired Cognitive Systems (BICS 2004)
    • Han F, Huang DS (2006) Improved extreme learning machine for function approximation by encoding a priori information. Neurocomputing 69: 2369-2373. (Pubitemid 44340619)
    • (2006) Neurocomputing , vol.69 , Issue.16-18 , pp. 2369-2373
    • Han, F.1    Huang, D.-S.2
  • 33
    • 0034954414 scopus 로고    scopus 로고
    • Classification and diagnostic prediction of cancers using gene expression profiling and artificial neural networks
    • Khan J, Wei JS, Ringner M, Saal LH, Ladanyi M, et al. (2001) Classification and diagnostic prediction of cancers using gene expression profiling and artificial neural networks. Nature Medicine 7: 637-679.
    • (2001) Nature Medicine , vol.7 , pp. 637-679
    • Khan, J.1    Wei, J.S.2    Ringner, M.3    Saal, L.H.4    Ladanyi, M.5
  • 34
    • 35748930579 scopus 로고    scopus 로고
    • Modified constrained learning algorithms incorporating additional functional constraints into neural networks
    • DOI 10.1016/j.ins.2007.09.008, PII S0020025507004276, "Ambient Intelligence"
    • Han F, Ling QH, Huang DS (2008) Modified constrained learning algorithms incorporating additional functional constraints into neural networks. Information Sciences 178: 907-919. (Pubitemid 350050971)
    • (2008) Information Sciences , vol.178 , Issue.3 , pp. 907-919
    • Han, F.1    Ling, Q.-H.2    Huang, D.-S.3
  • 35
    • 27744549560 scopus 로고    scopus 로고
    • Feature selection for cancer classification based on support vector machine
    • Li YX, Ruan XG (2005) Feature selection for cancer classification based on support vector machine. Journal of Computer Research and Development 42: 1796-1801.
    • (2005) Journal of Computer Research and Development , vol.42 , pp. 1796-1801
    • Li, Y.X.1    Ruan, X.G.2
  • 37
    • 0033569406 scopus 로고    scopus 로고
    • Molecular classification of cancer: Class discovery and class prediction by gene expression monitoring
    • Golub TR, Slonim DK, Tamayo P, Huard C, Gaasenbeek M, et al. (1999) Molecular classification of cancer: Class discovery and class prediction by gene expression monitoring. Science 286: 531-536.
    • (1999) Science , vol.286 , pp. 531-536
    • Golub, T.R.1    Slonim, D.K.2    Tamayo, P.3    Huard, C.4    Gaasenbeek, M.5
  • 38
    • 33746677949 scopus 로고    scopus 로고
    • A stable gene selection in microarray data analysis
    • Yang K, Cai Z, Li J, Lin G (2006) A stable gene selection in microarray data analysis. BMC Bioinformatics 7: 228-243.
    • (2006) BMC Bioinformatics , vol.7 , pp. 228-243
    • Yang, K.1    Cai, Z.2    Li, J.3    Lin, G.4
  • 42
    • 24144440779 scopus 로고    scopus 로고
    • Gene extraction for cancer diagnosis by support vector machines-An improvement
    • Huang TM, Kecman V (2005) Gene extraction for cancer diagnosis by support vector machines-An improvement. Artificial Intelligence in Medicine 35: 185-194.
    • (2005) Artificial Intelligence in Medicine , vol.35 , pp. 185-194
    • Huang, T.M.1    Kecman, V.2
  • 43
    • 33644875477 scopus 로고    scopus 로고
    • Applications of support vector machines to cancer classification with microarray data
    • DOI 10.1142/S0129065705000396, PII S0129065705000396
    • Chu F, Wang L (2005) Applications of support vector machines to cancer classification with microarray data. International Journal of Neural Systems 15: 475-484. (Pubitemid 44099482)
    • (2005) International Journal of Neural Systems , vol.15 , Issue.6 , pp. 475-484
    • Chu, F.1    Wang, L.2
  • 44
    • 80053533738 scopus 로고    scopus 로고
    • Microarray-based cancer prediction using single genes
    • Wang XS, Simon R (2011) Microarray-based cancer prediction using single genes. BMC Bioinformatics, 12: 391.
    • (2011) BMC Bioinformatics , vol.12 , pp. 391
    • Wang, X.S.1    Simon, R.2
  • 45
    • 84881127179 scopus 로고    scopus 로고
    • MIDClass: Microarray data classification by association rules and gene expression intervals
    • Giugno R, Pulvirenti A, Cascione L, Pigola G, Ferro A (2013) MIDClass: Microarray data classification by association rules and gene expression intervals. PLoS ONE 8(8): e69873.
    • (2013) PLoS ONE , vol.8 , Issue.8
    • Giugno, R.1    Pulvirenti, A.2    Cascione, L.3    Pigola, G.4    Ferro, A.5
  • 46
    • 0031337977 scopus 로고    scopus 로고
    • A comparison between pca. And neural networks and the jpeg standard for performing image compression
    • Oliveira PR, Romero RF (1996) A comparison between pca. and neural networks and the jpeg standard for performing image compression. in Proc. IEEE Workshop on. Cybernetic Vision, 112-116.
    • (1996) Proc. IEEE Workshop on. Cybernetic Vision , pp. 112-116
    • Oliveira, P.R.1    Romero, R.F.2
  • 48
    • 0142102589 scopus 로고    scopus 로고
    • New gene selection method for classification of cancer subtypes considering within-class variation
    • DOI 10.1016/S0014-5793(03)00819-6
    • Cho JH, Lee D, Park JH, Lee IB (2003) New gene selection for classification of cancer subtype considering within-class variation. FEBS Letters 551: 3-7. (Pubitemid 37281318)
    • (2003) FEBS Letters , vol.551 , Issue.1-3 , pp. 3-7
    • Cho, J.-H.1    Lee, D.2    Park, J.H.3    Lee, I.-B.4
  • 49
    • 0036489046 scopus 로고    scopus 로고
    • Comparison of discrimination methods for the classification of tumors using gene expression data
    • Dudoit S, Fridlyand J, Speed TP (2002) Comparison of discrimination methods for the classification of tumors using gene expression data. Journal of the American Statistical Association 97: 77-87.
    • (2002) Journal of the American Statistical Association , vol.97 , pp. 77-87
    • Dudoit, S.1    Fridlyand, J.2    Speed, T.P.3
  • 50
    • 0036161259 scopus 로고    scopus 로고
    • Gene selection for cancer classification using support vector machines
    • DOI 10.1023/A:1012487302797
    • Guyon I, Weston J, Barnhill S, Vapnik V (2002) Gene selection for cancer classification using support vector machines. Machine Learning 46: 389-422. (Pubitemid 34129977)
    • (2002) Machine Learning , vol.46 , Issue.1-3 , pp. 389-422
    • Guyon, I.1    Weston, J.2    Barnhill, S.3    Vapnik, V.4
  • 51
    • 0030373901 scopus 로고    scopus 로고
    • The application of cluster analysis in Strategic Management Research: An analysis and critique
    • Ketchen DJ, Shook CL (1996) The application of cluster analysis in Strategic Management Research: An analysis and critique. Strategic Management Journal 17(6): 441-458.
    • (1996) Strategic Management Journal , vol.17 , Issue.6 , pp. 441-458
    • Ketchen, D.J.1    Shook, C.L.2
  • 52
    • 0023453329 scopus 로고
    • Silhouettes: A Graphical aid to the interpretation and validation of cluster analysis
    • Rousseuw PJ (1987) Silhouettes: a Graphical aid to the interpretation and validation of cluster analysis. Computational and Applied Mathematics 20: 53-65.
    • (1987) Computational and Applied Mathematics , vol.20 , pp. 53-65
    • Rousseuw, P.J.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.