메뉴 건너뛰기




Volumn 41, Issue 3, 2014, Pages 231-240

Nanotechnology biomimetic cartilageregenerative scaffolds

Author keywords

Biomimetics; Cartilage; Guided tissue regeneration; Nanotechnology; Tissue scaffolds

Indexed keywords

AGGRECAN; BIOMIMETIC MATERIAL; COLLAGEN; GLYCOSAMINOGLYCAN; POLYESTER; TISSUE SCAFFOLD;

EID: 84901351605     PISSN: 22346163     EISSN: 22346171     Source Type: Journal    
DOI: 10.5999/aps.2014.41.3.231     Document Type: Review
Times cited : (40)

References (63)
  • 1
    • 2142689420 scopus 로고
    • Skeletal tissues
    • In: Wheater PR, Burkitt HG, Daniels VG, editors, 2nd ed. Edinburgh: Churchill Livingston
    • Wheater PR, Burkitt HG. Skeletal tissues. In: Wheater PR, Burkitt HG, Daniels VG, editors. Functional histology. 2nd ed. Edinburgh: Churchill Livingston; 1987. p.142-60.
    • (1987) Functional Histology , pp. 142-160
    • Wheater, P.R.1    Burkitt, H.G.2
  • 3
    • 33544464547 scopus 로고    scopus 로고
    • Cartilage
    • In: Ross MH, Pawlina W, editors, Baltimore: Lippincott Williams & Wilkins
    • Ross MH, Kaye GI, Pawlina W. Cartilage. In: Ross MH, Pawlina W, editors. Histology: a text and atlas. Baltimore: Lippincott Williams & Wilkins; 2002. p.164-79.
    • (2002) Histology: A Text and Atlas , pp. 164-179
    • Ross, M.H.1    Kaye, G.I.2    Pawlina, W.3
  • 4
    • 0027595948 scopus 로고
    • Tissue engineering
    • Langer R, Vacanti JP. Tissue engineering. Science 1993;260:920-6.
    • (1993) Science , vol.260 , pp. 920-926
    • Langer, R.1    Vacanti, J.P.2
  • 6
    • 0037082703 scopus 로고    scopus 로고
    • Mechanical compression alters gene expression and extracellular matrix synthesis by chondrocytes cultured in collagen I gels
    • Hunter CJ, Imler SM, Malaviya P, et al. Mechanical compression alters gene expression and extracellular matrix synthesis by chondrocytes cultured in collagen I gels. Biomaterials 2002;23:1249-59.
    • (2002) Biomaterials , vol.23 , pp. 1249-1259
    • Hunter, C.J.1    Imler, S.M.2    Malaviya, P.3
  • 7
    • 1842788540 scopus 로고    scopus 로고
    • Low oxygen tension stimulates the redifferentiation of dedifferentiated adult human nasal chondrocytes
    • Malda J, van Blitterswijk CA, van Geffen M, et al. Low oxygen tension stimulates the redifferentiation of dedifferentiated adult human nasal chondrocytes. Osteoarthritis Cartilage 2004;12:306-13.
    • (2004) Osteoarthritis Cartilage , vol.12 , pp. 306-313
    • Malda, J.1    van Blitterswijk, C.A.2    van Geffen, M.3
  • 9
    • 0031608434 scopus 로고    scopus 로고
    • Articular cartilage: Tissue design and chondrocyte-matrix interactions
    • Buckwalter JA, Mankin HJ. Articular cartilage: tissue design and chondrocyte-matrix interactions. Instr Course Lect 1998;47:477-86.
    • (1998) Instr Course Lect , vol.47 , pp. 477-486
    • Buckwalter, J.A.1    Mankin, H.J.2
  • 10
    • 0034786695 scopus 로고    scopus 로고
    • Composition and structure of articular cartilage: A template for tissue repair
    • Poole AR, Kojima T, Yasuda T, et al. Composition and structure of articular cartilage: a template for tissue repair. Clin Orthop Relat Res 2001;(391 Suppl):S26-S33.
    • (2001) Clin Orthop Relat Res , vol.391 , Issue.SUPPL.
    • Poole, A.R.1    Kojima, T.2    Yasuda, T.3
  • 11
    • 16644381840 scopus 로고    scopus 로고
    • Quantitative analysis of the effects of hyaluronan and aggrecan concentration and hyaluronan size on the elasticity of hyaluronan-aggrecan solutions
    • Nishimura M, Kawata M, Yan W, et al. Quantitative analysis of the effects of hyaluronan and aggrecan concentration and hyaluronan size on the elasticity of hyaluronan-aggrecan solutions. Biorheology 2004;41:629-39.
    • (2004) Biorheology , vol.41 , pp. 629-639
    • Nishimura, M.1    Kawata, M.2    Yan, W.3
  • 12
    • 0037430511 scopus 로고    scopus 로고
    • Characterization of enzymatically digested hyaluronic acid using NMR, Raman, IR, and UV-Vis spectroscopies
    • Alkrad JA, Mrestani Y, Stroehl D, et al. Characterization of enzymatically digested hyaluronic acid using NMR, Raman, IR, and UV-Vis spectroscopies. J Pharm Biomed Anal 2003;31:545-50.
    • (2003) J Pharm Biomed Anal , vol.31 , pp. 545-550
    • Alkrad, J.A.1    Mrestani, Y.2    Stroehl, D.3
  • 13
    • 0142059299 scopus 로고    scopus 로고
    • Individual cartilage aggrecan macromolecules and their constituent glycosaminoglycans visualized via atomic force microscopy
    • Ng L, Grodzinsky AJ, Patwari P, et al. Individual cartilage aggrecan macromolecules and their constituent glycosaminoglycans visualized via atomic force microscopy. J Struct Biol 2003;143:242-57.
    • (2003) J Struct Biol , vol.143 , pp. 242-257
    • Ng, L.1    Grodzinsky, A.J.2    Patwari, P.3
  • 14
    • 0033525365 scopus 로고    scopus 로고
    • Bioengineering of elastic cartilage with aggregated porcine and human auricular chondrocytes and hydrogels containing alginate, collagen, and kappa-elastin
    • de Chalain T, Phillips JH, Hinek A. Bioengineering of elastic cartilage with aggregated porcine and human auricular chondrocytes and hydrogels containing alginate, collagen, and kappa-elastin. J Biomed Mater Res 1999;44:280-8.
    • (1999) J Biomed Mater Res , vol.44 , pp. 280-288
    • de Chalain, T.1    Phillips, J.H.2    Hinek, A.3
  • 15
    • 20444432818 scopus 로고    scopus 로고
    • Electrospun chitosan-based nanofibers and their cellular compatibility
    • Bhattarai N, Edmondson D, Veiseh O, et al. Electrospun chitosan-based nanofibers and their cellular compatibility. Biomaterials 2005;26:6176-84.
    • (2005) Biomaterials , vol.26 , pp. 6176-6184
    • Bhattarai, N.1    Edmondson, D.2    Veiseh, O.3
  • 16
    • 26944463854 scopus 로고    scopus 로고
    • Electrospinning of collagen and elastin for tissue engineering applications
    • Buttafoco L, Kolkman NG, Engbers-Buijtenhuijs P, et al. Electrospinning of collagen and elastin for tissue engineering applications. Biomaterials 2006;27:724-34.
    • (2006) Biomaterials , vol.27 , pp. 724-734
    • Buttafoco, L.1    Kolkman, N.G.2    Engbers-Buijtenhuijs, P.3
  • 17
    • 0348014768 scopus 로고    scopus 로고
    • The use of a novel PLGA fiber/collagen composite web as a scaffold for engineering of articular cartilage tissue with adjustable thickness
    • Chen G, Sato T, Ushida T, et al. The use of a novel PLGA fiber/collagen composite web as a scaffold for engineering of articular cartilage tissue with adjustable thickness. J Biomed Mater Res A 2003;67:1170-80.
    • (2003) J Biomed Mater Res A , vol.67 , pp. 1170-1180
    • Chen, G.1    Sato, T.2    Ushida, T.3
  • 18
    • 26244433914 scopus 로고    scopus 로고
    • Influence of three-dimensional culture in a type II collagen sponge on primary cultured and dedifferentiated chondrocytes
    • Mukaida T, Urabe K, Naruse K, et al. Influence of three-dimensional culture in a type II collagen sponge on primary cultured and dedifferentiated chondrocytes. J Orthop Sci 2005;10:521-8.
    • (2005) J Orthop Sci , vol.10 , pp. 521-528
    • Mukaida, T.1    Urabe, K.2    Naruse, K.3
  • 19
    • 20944444089 scopus 로고    scopus 로고
    • Cellular and molecular events during chondrogenesis of human mesenchymal stromal cells grown in a three-dimensional hyaluronan based scaffold
    • Lisignoli G, Cristino S, Piacentini A, et al. Cellular and molecular events during chondrogenesis of human mesenchymal stromal cells grown in a three-dimensional hyaluronan based scaffold. Biomaterials 2005;26:5677-86.
    • (2005) Biomaterials , vol.26 , pp. 5677-5686
    • Lisignoli, G.1    Cristino, S.2    Piacentini, A.3
  • 20
    • 33744942905 scopus 로고    scopus 로고
    • Fabrication and characterization of six electrospun poly(alpha-hydroxy ester)-based fibrous scaffolds for tissue engineering applications
    • Li WJ, Cooper JA Jr, Mauck RL, et al. Fabrication and characterization of six electrospun poly(alpha-hydroxy ester)-based fibrous scaffolds for tissue engineering applications. Acta Biomater 2006;2:377-85.
    • (2006) Acta Biomater , vol.2 , pp. 377-385
    • Li, W.J.1    Cooper Jr., J.A.2    Mauck, R.L.3
  • 21
    • 0034580276 scopus 로고    scopus 로고
    • Synthetic biodegradable polymers as orthopedic devices
    • Middleton JC, Tipton AJ. Synthetic biodegradable polymers as orthopedic devices. Biomaterials 2000;21:2335-46.
    • (2000) Biomaterials , vol.21 , pp. 2335-2346
    • Middleton, J.C.1    Tipton, A.J.2
  • 22
    • 0034904632 scopus 로고    scopus 로고
    • Tissue engineering: A 21st century solution to surgical reconstruction
    • Fuchs JR, Nasseri BA, Vacanti JP. Tissue engineering: a 21st century solution to surgical reconstruction. Ann Thorac Surg 2001;72:577-91.
    • (2001) Ann Thorac Surg , vol.72 , pp. 577-591
    • Fuchs, J.R.1    Nasseri, B.A.2    Vacanti, J.P.3
  • 23
    • 33645512629 scopus 로고    scopus 로고
    • Biomimicking extracellular matrix: Cell adhesive RGD peptide modified electrospun poly(D,L-lactic-co-glycolic acid) nanofiber mesh
    • Kim TG, Park TG. Biomimicking extracellular matrix: cell adhesive RGD peptide modified electrospun poly(D,L-lactic-co-glycolic acid) nanofiber mesh. Tissue Eng 2006;12:221-33.
    • (2006) Tissue Eng , vol.12 , pp. 221-233
    • Kim, T.G.1    Park, T.G.2
  • 24
    • 0018989171 scopus 로고
    • Design of an artificial skin. II. Control of chemical composition
    • Yannas IV, Burke JF, Gordon PL, et al. Design of an artificial skin. II. Control of chemical composition. J Biomed Mater Res 1980;14:107-32.
    • (1980) J Biomed Mater Res , vol.14 , pp. 107-132
    • Yannas, I.V.1    Burke, J.F.2    Gordon, P.L.3
  • 25
    • 0001031272 scopus 로고
    • Synthesis and character ization of a model extracellular matrix that induces partial regeneration of adult mammalian skin
    • Yannas IV, Lee E, Orgill DP, et al. Synthesis and character ization of a model extracellular matrix that induces partial regeneration of adult mammalian skin. Proc Natl Acad Sci U S A 1989;86:933-7.
    • (1989) Proc Natl Acad Sci U S A , vol.86 , pp. 933-937
    • Yannas, I.V.1    Lee, E.2    Orgill, D.P.3
  • 26
    • 0019035114 scopus 로고
    • Design of an artificial skin. Part III. Control of pore structure
    • Dagalakis N, Flink J, Stasikelis P, et al. Design of an artificial skin. Part III. Control of pore structure. J Biomed Mater Res 1980;14:511-28.
    • (1980) J Biomed Mater Res , vol.14 , pp. 511-528
    • Dagalakis, N.1    Flink, J.2    Stasikelis, P.3
  • 27
    • 0030726664 scopus 로고    scopus 로고
    • Transplantation of chondrocytes utilizing a polymer-cell construct to produce tissue-engineered cartilage in the shape of a human ear
    • Cao Y, Vacanti JP, Paige KT, et al. Transplantation of chondrocytes utilizing a polymer-cell construct to produce tissue-engineered cartilage in the shape of a human ear. Plast Reconstr Surg 1997;100:297-302.
    • (1997) Plast Reconstr Surg , vol.100 , pp. 297-302
    • Cao, Y.1    Vacanti, J.P.2    Paige, K.T.3
  • 28
    • 37049029660 scopus 로고    scopus 로고
    • Biomimetic materials for tissue engineering
    • Ma PX. Biomimetic materials for tissue engineering. Adv Drug Deliv Rev 2008;60:184-98.
    • (2008) Adv Drug Deliv Rev , vol.60 , pp. 184-198
    • Ma, P.X.1
  • 29
    • 57349176894 scopus 로고    scopus 로고
    • Clinical transplantation of a tissue-engineered airway
    • Macchiarini P, Jungebluth P, Go T, et al. Clinical transplantation of a tissue-engineered airway. Lancet 2008;372:2023-30.
    • (2008) Lancet , vol.372 , pp. 2023-2030
    • Macchiarini, P.1    Jungebluth, P.2    Go, T.3
  • 30
    • 27944466697 scopus 로고    scopus 로고
    • Exploring and engineering the cell surface interface
    • Stevens MM, George JH. Exploring and engineering the cell surface interface. Science 2005;310:1135-8.
    • (2005) Science , vol.310 , pp. 1135-1138
    • Stevens, M.M.1    George, J.H.2
  • 31
    • 19644367664 scopus 로고    scopus 로고
    • Synthetic biomaterials as instructive extracellular microenvironments for morphogenesis in tissue engineering
    • Lutolf MP, Hubbell JA. Synthetic biomaterials as instructive extracellular microenvironments for morphogenesis in tissue engineering. Nat Biotechnol 2005;23:47-55.
    • (2005) Nat Biotechnol , vol.23 , pp. 47-55
    • Lutolf, M.P.1    Hubbell, J.A.2
  • 32
    • 0035941075 scopus 로고    scopus 로고
    • Taking cell-matrix adhesions to the third dimension
    • Cukierman E, Pankov R, Stevens DR, et al. Taking cell-matrix adhesions to the third dimension. Science 2001;294:1708-12.
    • (2001) Science , vol.294 , pp. 1708-1712
    • Cukierman, E.1    Pankov, R.2    Stevens, D.R.3
  • 33
    • 84863438327 scopus 로고    scopus 로고
    • Chondrogenic potential of electrospun nanofibres for cartilage tissue engineering
    • Wimpenny I, Ashammakhi N, Yang Y. Chondrogenic potential of electrospun nanofibres for cartilage tissue engineering. J Tissue Eng Regen Med 2012;6:536-49.
    • (2012) J Tissue Eng Regen Med , vol.6 , pp. 536-549
    • Wimpenny, I.1    Ashammakhi, N.2    Yang, Y.3
  • 34
    • 0346123065 scopus 로고    scopus 로고
    • Biological response of chondrocytes cultured in three-dimensional nanofibrous poly(epsilon-caprolactone) scaffolds
    • Li WJ, Danielson KG, Alexander PG, et al. Biological response of chondrocytes cultured in three-dimensional nanofibrous poly(epsilon-caprolactone) scaffolds. J Biomed Mater Res A 2003;67:1105-14.
    • (2003) J Biomed Mater Res A , vol.67 , pp. 1105-1114
    • Li, W.J.1    Danielson, K.G.2    Alexander, P.G.3
  • 35
    • 33746714341 scopus 로고    scopus 로고
    • Chondrocyte phenotype in engineered fibrous matrix is regulated by fiber size
    • Li WJ, Jiang YJ, Tuan RS. Chondrocyte phenotype in engineered fibrous matrix is regulated by fiber size. Tissue Eng 2006;12:1775-85.
    • (2006) Tissue Eng , vol.12 , pp. 1775-1785
    • Li, W.J.1    Jiang, Y.J.2    Tuan, R.S.3
  • 36
    • 36248962668 scopus 로고    scopus 로고
    • Nanofiber technology: Designing the next generation of tissue engineering scaffolds
    • Barnes CP, Sell SA, Boland ED, et al. Nanofiber technology: designing the next generation of tissue engineering scaffolds. Adv Drug Deliv Rev 2007;59:1413-33.
    • (2007) Adv Drug Deliv Rev , vol.59 , pp. 1413-1433
    • Barnes, C.P.1    Sell, S.A.2    Boland, E.D.3
  • 37
    • 0037192505 scopus 로고    scopus 로고
    • Self-assembly at all scales
    • Whitesides GM, Grzybowski B. Self-assembly at all scales. Science 2002;295:2418-21.
    • (2002) Science , vol.295 , pp. 2418-2421
    • Whitesides, G.M.1    Grzybowski, B.2
  • 38
    • 4444330267 scopus 로고    scopus 로고
    • Biomaterials: Where we have been and where we are going
    • Ratner BD, Bryant SJ. Biomaterials: where we have been and where we are going. Annu Rev Biomed Eng 2004;6:41-75.
    • (2004) Annu Rev Biomed Eng , vol.6 , pp. 41-75
    • Ratner, B.D.1    Bryant, S.J.2
  • 39
    • 0035941074 scopus 로고    scopus 로고
    • Self-assembly and mineralization of peptide-amphiphile nanofibers
    • Hartgerink JD, Beniash E, Stupp SI. Self-assembly and mineralization of peptide-amphiphile nanofibers. Science 2001;294:1684-8.
    • (2001) Science , vol.294 , pp. 1684-1688
    • Hartgerink, J.D.1    Beniash, E.2    Stupp, S.I.3
  • 40
    • 0141765883 scopus 로고    scopus 로고
    • Fabrication of novel biomaterials through molecular self-assembly
    • Zhang S. Fabrication of novel biomaterials through molecular self-assembly. Nat Biotechnol 2003;21:1171-8.
    • (2003) Nat Biotechnol , vol.21 , pp. 1171-1178
    • Zhang, S.1
  • 41
    • 0034612266 scopus 로고    scopus 로고
    • Extensive neurite outgrowth and active synapse formation on self-assembling peptide scaffolds
    • Holmes TC, de Lacalle S, Su X, et al. Extensive neurite outgrowth and active synapse formation on self-assembling peptide scaffolds. Proc Natl Acad Sci U S A 2000;97:6728-33.
    • (2000) Proc Natl Acad Sci U S A , vol.97 , pp. 6728-6733
    • Holmes, T.C.1    de Lacalle, S.2    Su, X.3
  • 42
    • 0037162463 scopus 로고    scopus 로고
    • Self-assembling peptide hydrogel fosters chondrocyte extracellular matrix production and cell division: Implications for cartilage tissue repair
    • Kisiday J, Jin M, Kurz B, et al. Self-assembling peptide hydrogel fosters chondrocyte extracellular matrix production and cell division: implications for cartilage tissue repair. Proc Natl Acad Sci U S A 2002;99:9996-10001.
    • (2002) Proc Natl Acad Sci U S A , vol.99 , pp. 9996-10001
    • Kisiday, J.1    Jin, M.2    Kurz, B.3
  • 43
    • 39049132284 scopus 로고    scopus 로고
    • Self-assembling peptide nanofiber scaffolds accelerate wound healing
    • Schneider A, Garlick JA, Egles C. Self-assembling peptide nanofiber scaffolds accelerate wound healing. PLoS One 2008;3:e1410.
    • (2008) PLoS One , vol.3
    • Schneider, A.1    Garlick, J.A.2    Egles, C.3
  • 44
    • 84870254170 scopus 로고    scopus 로고
    • Self-assembled octapeptide scaffolds for in vitro chondrocyte culture
    • Mujeeb A, Miller AF, Saiani A, et al. Self-assembled octapeptide scaffolds for in vitro chondrocyte culture. Acta Biomater 2013;9:4609-17.
    • (2013) Acta Biomater , vol.9 , pp. 4609-4617
    • Mujeeb, A.1    Miller, A.F.2    Saiani, A.3
  • 45
    • 78649680579 scopus 로고    scopus 로고
    • Self-assembled rosette nanotube/hydrogel composites for cartilage tissue engineering
    • Chen Y, Bilgen B, Pareta RA, et al. Self-assembled rosette nanotube/hydrogel composites for cartilage tissue engineering. Tissue Eng Part C Methods 2010;16:1233-43.
    • (2010) Tissue Eng Part C Methods , vol.16 , pp. 1233-1243
    • Chen, Y.1    Bilgen, B.2    Pareta, R.A.3
  • 46
    • 0032949079 scopus 로고    scopus 로고
    • Synthetic nano-scale fibrous extracellular matrix
    • Ma PX, Zhang R. Synthetic nano-scale fibrous extracellular matrix. J Biomed Mater Res 1999;46:60-72.
    • (1999) J Biomed Mater Res , vol.46 , pp. 60-72
    • Ma, P.X.1    Zhang, R.2
  • 47
    • 0346864790 scopus 로고    scopus 로고
    • Nano-fibrous scaffolding architecture selectively enhances protein adsorption contributing to cell attachment
    • Woo KM, Chen VJ, Ma PX. Nano-fibrous scaffolding architecture selectively enhances protein adsorption contributing to cell attachment. J Biomed Mater Res A 2003;67:531-7.
    • (2003) J Biomed Mater Res A , vol.67 , pp. 531-537
    • Woo, K.M.1    Chen, V.J.2    Ma, P.X.3
  • 48
    • 33749539648 scopus 로고    scopus 로고
    • Nano-fibrous scaffolding promotes osteoblast differentiation and biomineralization
    • Woo KM, Jun JH, Chen VJ, et al. Nano-fibrous scaffolding promotes osteoblast differentiation and biomineralization. Biomaterials 2007;28:335-43.
    • (2007) Biomaterials , vol.28 , pp. 335-343
    • Woo, K.M.1    Jun, J.H.2    Chen, V.J.3
  • 49
    • 3542990872 scopus 로고    scopus 로고
    • Design, synthesis and properties of a degradable polyurethane scaffold for meniscus regeneration
    • Heijkants RG, van Calck RV, De Groot JH, et al. Design, synthesis and properties of a degradable polyurethane scaffold for meniscus regeneration. J Mater Sci Mater Med 2004;15:423-7.
    • (2004) J Mater Sci Mater Med , vol.15 , pp. 423-427
    • Heijkants, R.G.1    van Calck, R.V.2    de Groot, J.H.3
  • 50
    • 26844514770 scopus 로고    scopus 로고
    • Chitosan-alginate as scaffolding material for cartilage tissue engineering
    • Li Z, Zhang M. Chitosan-alginate as scaffolding material for cartilage tissue engineering. J Biomed Mater Res A 2005;75:485-93.
    • (2005) J Biomed Mater Res A , vol.75 , pp. 485-493
    • Li, Z.1    Zhang, M.2
  • 51
    • 58649097917 scopus 로고    scopus 로고
    • A polylactide/fibrin gel composite scaffold for cartilage tissue engineering: Fabrication and an in vitro evaluation
    • Zhao H, Ma L, Gong Y, et al. A polylactide/fibrin gel composite scaffold for cartilage tissue engineering: fabrication and an in vitro evaluation. J Mater Sci Mater Med 2009;20:135-43.
    • (2009) J Mater Sci Mater Med , vol.20 , pp. 135-143
    • Zhao, H.1    Ma, L.2    Gong, Y.3
  • 52
    • 8844263768 scopus 로고    scopus 로고
    • Nano-fibrous scaffolds for tissue engineering
    • Smith LA, Ma PX. Nano-fibrous scaffolds for tissue engineering. Colloids Surf B Biointerfaces 2004;39:125-31.
    • (2004) Colloids Surf B Biointerfaces , vol.39 , pp. 125-131
    • Smith, L.A.1    Ma, P.X.2
  • 53
    • 0034307741 scopus 로고    scopus 로고
    • The effect of processing variables on the morphology of electrospun nanofibers and textiles
    • Deitzel JM, Kleinmeyer J, Harris D, et al. The effect of processing variables on the morphology of electrospun nanofibers and textiles. Polymer 2001;42:261-72.
    • (2001) Polymer , vol.42 , pp. 261-272
    • Deitzel, J.M.1    Kleinmeyer, J.2    Harris, D.3
  • 54
    • 10044289544 scopus 로고    scopus 로고
    • Electrospinning of nano/micro scale poly(L-lactic acid) aligned fibers and their potential in neural tissue engineering
    • Yang F, Murugan R, Wang S, et al. Electrospinning of nano/micro scale poly(L-lactic acid) aligned fibers and their potential in neural tissue engineering. Biomaterials 2005;26:2603-10.
    • (2005) Biomaterials , vol.26 , pp. 2603-2610
    • Yang, F.1    Murugan, R.2    Wang, S.3
  • 55
    • 3042657316 scopus 로고    scopus 로고
    • Material science. Spinning continuous fibers for nanotechnology
    • Dzenis Y. Material science. Spinning continuous fibers for nanotechnology. Science 2004;304:1917-9.
    • (2004) Science , vol.304 , pp. 1917-1919
    • Dzenis, Y.1
  • 56
    • 0242607105 scopus 로고    scopus 로고
    • Aligned biodegradable nanofibrous structure: A potential scaffold for blood vessel engineering
    • Xu CY, Inai R, Kotaki M, et al. Aligned biodegradable nanofibrous structure: a potential scaffold for blood vessel engineering. Biomaterials 2004;25:877-86.
    • (2004) Biomaterials , vol.25 , pp. 877-886
    • Xu, C.Y.1    Inai, R.2    Kotaki, M.3
  • 57
    • 34250862636 scopus 로고    scopus 로고
    • Polymer surface modification for the attachment of bioactive compounds
    • Goddard JM, Hotchkiss JH. Polymer surface modification for the attachment of bioactive compounds. Prog Polym Sci 2007;32:698-725.
    • (2007) Prog Polym Sci , vol.32 , pp. 698-725
    • Goddard, J.M.1    Hotchkiss, J.H.2
  • 58
    • 33646360579 scopus 로고    scopus 로고
    • TGF-beta1 immobilized tri-co-polymer for articular cartilage tissue engineering
    • Chou CH, Cheng WT, Lin CC, et al. TGF-beta1 immobilized tri-co-polymer for articular cartilage tissue engineering. J Biomed Mater Res B Appl Biomater 2006;77:338-48.
    • (2006) J Biomed Mater Res B Appl Biomater , vol.77 , pp. 338-348
    • Chou, C.H.1    Cheng, W.T.2    Lin, C.C.3
  • 59
    • 4744366676 scopus 로고    scopus 로고
    • Cartilage tissue engineering PLLA scaffold with surface immobilized collagen and basic fibroblast growth factor
    • Ma Z, Gao C, Gong Y, et al. Cartilage tissue engineering PLLA scaffold with surface immobilized collagen and basic fibroblast growth factor. Biomaterials 2005;26:1253-9.
    • (2005) Biomaterials , vol.26 , pp. 1253-1259
    • Ma, Z.1    Gao, C.2    Gong, Y.3
  • 60
    • 45849140528 scopus 로고    scopus 로고
    • Critical factors in the design of growth factor releasing scaffolds for cartilage tissue engineering
    • Sohier J, Moroni L, van Blitterswijk C, et al. Critical factors in the design of growth factor releasing scaffolds for cartilage tissue engineering. Expert Opin Drug Deliv 2008;5:543-66.
    • (2008) Expert Opin Drug Deliv , vol.5 , pp. 543-566
    • Sohier, J.1    Moroni, L.2    van Blitterswijk, C.3
  • 61
    • 39749096814 scopus 로고    scopus 로고
    • Smart biomaterials for tissue engineering of cartilage
    • Stoop R. Smart biomaterials for tissue engineering of cartilage. Injury 2008;39 Suppl 1:S77-87.
    • Injury 2008;39 Suppl , vol.1
    • Stoop, R.1
  • 62
    • 33846869956 scopus 로고    scopus 로고
    • Tailored release of TGF-beta1 from porous scaffolds for cartilage tissue engineering
    • Sohier J, Hamann D, Koenders M, et al. Tailored release of TGF-beta1 from porous scaffolds for cartilage tissue engineering. Int J Pharm 2007;332:80-9.
    • (2007) Int J Pharm , vol.332 , pp. 80-89
    • Sohier, J.1    Hamann, D.2    Koenders, M.3
  • 63
    • 0035656898 scopus 로고    scopus 로고
    • Controlled-release of IGF-I and TGF-beta1 in a photopolymerizing hydrogel for cartilage tissue engineering
    • Elisseeff J, McIntosh W, Fu K, et al. Controlled-release of IGF-I and TGF-beta1 in a photopolymerizing hydrogel for cartilage tissue engineering. J Orthop Res 2001;19:1098-104.
    • (2001) J Orthop Res , vol.19 , pp. 1098-1104
    • Elisseeff, J.1    McIntosh, W.2    Fu, K.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.