메뉴 건너뛰기




Volumn , Issue , 2013, Pages

Canonical polyadic decomposition for unsupervised linear feature extraction from protein profiles

Author keywords

cancer prediction; Feature extraction; tensor decomposition

Indexed keywords

FEATURE EXTRACTION; MATHEMATICAL TRANSFORMATIONS; MATRIX ALGEBRA; PROTEINS; SIGNAL PROCESSING; TENSORS;

EID: 84901347558     PISSN: 22195491     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (1)

References (25)
  • 1
    • 33745561205 scopus 로고    scopus 로고
    • An introduction to variable selection and feature selection
    • I. Guyon and A. Elisseeff, "An introduction to variable selection and feature selection," Journal of Machine Learning Research, vol. 3, pp. 1157-1182, 2003.
    • (2003) Journal of Machine Learning Research , vol.3 , pp. 1157-1182
    • Guyon, I.1    Elisseeff, A.2
  • 4
    • 68649096448 scopus 로고    scopus 로고
    • Tensor decompositions and applications
    • T. G. Kolda and B. W. Bader, "Tensor decompositions and applications," SIAMReview, vol. 51, no. 3, pp. 455-500, 2009.
    • (2009) SIAMReview , vol.51 , Issue.3 , pp. 455-500
    • Kolda, T.G.1    Bader, B.W.2
  • 5
    • 51649131593 scopus 로고    scopus 로고
    • Extracting the optimal dimensionality for local tensor discriminant analysis
    • Jan.
    • F. Nie, S. Xiang, Y. Song, and C. Zhang, "Extracting the optimal dimensionality for local tensor discriminant analysis," Pattern Recognition, vol. 42, no. 1, pp. 105-114, Jan. 2009.
    • (2009) Pattern Recognition , vol.42 , Issue.1 , pp. 105-114
    • Nie, F.1    Xiang, S.2    Song, Y.3    Zhang, C.4
  • 6
    • 78751515806 scopus 로고    scopus 로고
    • Tensor decompositions for feature extraction and classification of high dimensional datasets
    • H. A. Phan and A. Cichocki, "Tensor decompositions for feature extraction and classification of high dimensional datasets," Nonlinear Theory and Its Applications, IEICE, vol. 1, no. 1, pp. 37-68, 2010.
    • (2010) Nonlinear Theory and Its Applications, IEICE , vol.1 , Issue.1 , pp. 37-68
    • Phan, H.A.1    Cichocki, A.2
  • 7
    • 84870525911 scopus 로고    scopus 로고
    • Benefits of multi-domain feature of mismatch negativity extracted by non-negative tensor factorization from eeg collected by low-density array
    • F. Cong, A. H. Phan, Q. Zhao, T. Huttunen-Scott, J. Kaartinen, T. Ristaniemi, H. Lyytinen, and A. Cichocki, "Benefits of multi-domain feature of mismatch negativity extracted by non-negative tensor factorization from eeg collected by low-density array," Int. J. Neural Syst., vol. 22, no. 6, 2012.
    • (2012) Int. J. Neural Syst. , vol.22 , Issue.6
    • Cong, F.1    Phan, A.H.2    Zhao, Q.3    Huttunen-Scott, T.4    Kaartinen, J.5    Ristaniemi, T.6    Lyytinen, H.7    Cichocki, A.8
  • 9
    • 78149456734 scopus 로고    scopus 로고
    • A factorization method for the classification of infrared spectra
    • Carsten Henneges, Pavel Laskov, Endang Darmawan, Jürgen Backhaus, Bernd Kammerer, and Andreas Zell, "A factorization method for the classification of infrared spectra," BMC Bioinformatics, vol. 11, no. 1, pp. 561, 2010.
    • (2010) BMC Bioinformatics , vol.11 , Issue.1 , pp. 561
    • Henneges, C.1    Laskov, P.2    Darmawan, E.3    Backhaus, J.4    Kammerer, B.5    Zell, A.6
  • 10
    • 84855185917 scopus 로고    scopus 로고
    • A mixture model with a reference-based automatic selection of components for disease classification from protein and/or gene expression levels
    • Ivica Kopriva and Marko Filipovíc, "A mixture model with a reference-based automatic selection of components for disease classification from protein and/or gene expression levels," BMC Bioinformatics, vol. 12, pp. 496, 2011.
    • (2011) BMC Bioinformatics , vol.12 , pp. 496
    • Kopriva, I.1    Filipovíc, M.2
  • 11
    • 85162707890 scopus 로고
    • The expression of a tensor or a polyadic as a sum of products
    • F. L. Hitchcock, "The expression of a tensor or a polyadic as a sum of products," Journal of Mathematics and Physics, no. 7, pp. 164-189, 1927.
    • (1927) Journal of Mathematics and Physics , Issue.7 , pp. 164-189
    • Hitchcock, F.L.1
  • 12
    • 48749101457 scopus 로고
    • Three-way arrays: Rank and uniqueness of trilinear decompositions, with application to arithmetic complexity and statistics
    • J Kruskal, "Three-way arrays: rank and uniqueness of trilinear decompositions, with application to arithmetic complexity and statistics," Linear Algebra and Its Applications, vol. 18, pp. 95-138, 1977.
    • (1977) Linear Algebra and Its Applications , vol.18 , pp. 95-138
    • Kruskal, J.1
  • 13
    • 1942450610 scopus 로고    scopus 로고
    • Feature extraction by non-parametricmutual informationmaximization
    • K. Torkkola, "Feature extraction by non-parametricmutual informationmaximization," Journal ofMachine Learning Research, vol. 3, pp. 1415-1438, 2003.
    • (2003) Journal OfMachine Learning Research , vol.3 , pp. 1415-1438
    • Torkkola, K.1
  • 14
    • 34548656483 scopus 로고    scopus 로고
    • Maximization of mutual information for supervised linear feature extraction
    • J. M. Leiva-Murillo and A. Artès-Rodr̀gues, "Maximization of mutual information for supervised linear feature extraction," IEEE Transactions on Neural Networks, vol. 18, no. 5, pp. 1433-1441, 2007.
    • (2007) IEEE Transactions on Neural Networks , vol.18 , Issue.5 , pp. 1433-1441
    • Leiva-Murillo, J.M.1    Artès-Rodrgues, A.2
  • 16
    • 30144444694 scopus 로고    scopus 로고
    • A comparison of algorithms for fitting the PARAFAC model
    • G. Tomasi and R. Bro, "A comparison of algorithms for fitting the PARAFAC model," Computational Statistics & Data Analysis, vol. 50, no. 7, pp. 1700-1734, 2006.
    • (2006) Computational Statistics & Data Analysis , vol.50 , Issue.7 , pp. 1700-1734
    • Tomasi, G.1    Bro, R.2
  • 17
    • 0038685059 scopus 로고    scopus 로고
    • A new efficient method for determining the number of components in PARAFAC models
    • R. Bro and H. A. L. Kiers, "A new efficient method for determining the number of components in PARAFAC models," Journal of Chemometrics, vol. 17, pp. 274-286, 2002.
    • (2002) Journal of Chemometrics , vol.17 , pp. 274-286
    • Bro, R.1    Kiers, H.A.L.2
  • 21
    • 84901317456 scopus 로고    scopus 로고
    • Center for Cancer Research, National Cancer Institute
    • Center for Cancer Research, National Cancer Institute, "Clinical Proteomics Program," Available online.
    • Clinical Proteomics Program
  • 22
    • 0037120949 scopus 로고    scopus 로고
    • Serum proteomic patterns for detection of prostate cancer
    • E. F. Petricoin et al., "Serum proteomic patterns for detection of prostate cancer," Journal of the National Cancer Institute, vol. 94, no. 20, pp. 1576-1578, 2002.
    • (2002) Journal of the National Cancer Institute , vol.94 , Issue.20 , pp. 1576-1578
    • Petricoin, E.F.1
  • 24
    • 0037116832 scopus 로고    scopus 로고
    • Use of proteomic patterns in serum to identify ovarian cancer
    • E. F. Petricoin et al., "Use of proteomic patterns in serum to identify ovarian cancer," The Lancet, no. 359, pp. 572-577, 2002.
    • (2002) The Lancet , Issue.359 , pp. 572-577
    • Petricoin, E.F.1
  • 25
    • 3543076921 scopus 로고    scopus 로고
    • Application of the GA/KNN method to SELDI proteomics data
    • L. Li et al., "Application of the GA/KNN method to SELDI proteomics data," Bioinformatics, vol. 20, no. 10, pp. 1638-1640, 2003.
    • (2003) Bioinformatics , vol.20 , Issue.10 , pp. 1638-1640
    • Li, L.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.