-
4
-
-
3242717928
-
Recovering the missing components in a largenoisy low-rank matrix: Application to SFM
-
P. Chen and D. Suter, "Recovering the missing components in a largenoisy low-rank matrix: Application to SFM," IEEE Trans. PatternAnal. Mach. Intell., vol. 26, no. 8, pp. 1051-1063, 2004.
-
(2004)
IEEE Trans. PatternAnal. Mach. Intell.
, vol.26
, Issue.8
, pp. 1051-1063
-
-
Chen, P.1
Suter, D.2
-
5
-
-
77955991059
-
Robust video denoising using lowrank matrix completion
-
H. Ji, C. Liu, Z. Shen, and Y. Xu, "Robust video denoising using lowrank matrix completion," in Proc. IEEE Conf. Computer Vision andPattern Recognition, 2010, pp. 1791-1798.
-
(2010)
Proc. IEEE Conf. Computer Vision AndPattern Recognition
, pp. 1791-1798
-
-
Ji, H.1
Liu, C.2
Shen, Z.3
Xu, Y.4
-
7
-
-
26944457949
-
-
Ph.D. dissertation,Massachusetts Inst. Technol., Cambridge, MA, USA
-
N. Srebro, "Learning with matrix factorization," Ph.D. dissertation,Massachusetts Inst. Technol., Cambridge, MA, USA, 2004.
-
(2004)
Learning with Matrix Factorization
-
-
Srebro, N.1
-
8
-
-
72549110327
-
Interior-point method for nuclear normapproximation with application to system identification
-
Z. Liu and L. Vandenberghe, "Interior-point method for nuclear normapproximation with application to system identification," SIAM J. MatrixAnal. Applicat., vol. 31, no. 3, pp. 1235-1256, 2009.
-
(2009)
SIAM J. MatrixAnal. Applicat.
, vol.31
, Issue.3
, pp. 1235-1256
-
-
Liu, Z.1
Vandenberghe, L.2
-
9
-
-
77954824901
-
Sensor network localizationfrom local connectivity: Performance analysis for the MDS-MAP algorithm
-
S. Oh, A. Montanari, and L. Karbasi, "Sensor network localizationfrom local connectivity: Performance analysis for the MDS-MAP algorithm,"in Proc. IEEE Information Theory Workshop, 2010, pp. 1-5.
-
(2010)
Proc. IEEE Information Theory Workshop
, pp. 1-5
-
-
Oh, S.1
Montanari, A.2
Karbasi, L.3
-
10
-
-
84055222211
-
A low-rank matrix completionbased intra prediction for H.264/AVC
-
J. Wang, Y. Shi, W. Ding, and B. Yin, "A low-rank matrix completionbased intra prediction for H.264/AVC," in Proc. IEEE 13th Int. WorkshopMultimedia Signal Processing, 2011, pp. 1-6.
-
(2011)
Proc. IEEE 13th Int. WorkshopMultimedia Signal Processing
, pp. 1-6
-
-
Wang, J.1
Shi, Y.2
Ding, W.3
Yin, B.4
-
11
-
-
84876221739
-
An efficient videodenoising method using decomposition approach for low-rank matrixcompletion
-
N. Barzigar, A. Roozgard, S. Cheng, and P. Verma, "An efficient videodenoising method using decomposition approach for low-rank matrixcompletion," in Conf. Record 46th Asilomar Conf. Signals, Systemsand Computers, 2012, pp. 1684-1687.
-
(2012)
Conf. Record 46th Asilomar Conf. Signals, Systemsand Computers
, pp. 1684-1687
-
-
Barzigar, N.1
Roozgard, A.2
Cheng, S.3
Verma, P.4
-
12
-
-
79957983806
-
Video concealmentvia matrix completion at high missing rates
-
M. D. Dao, D. T. Nguyen, Y. Cao, and T. D. Tran, "Video concealmentvia matrix completion at high missing rates," in Proc. Asilomar Conf.Signals, Systems and Computers, 2010, pp. 758-762.
-
(2010)
Proc. Asilomar Conf.Signals, Systems and Computers
, pp. 758-762
-
-
Dao, M.D.1
Nguyen, D.T.2
Cao, Y.3
Tran, T.D.4
-
13
-
-
84863899797
-
SparseBayesian methods for low-rankmatrix estimation
-
Aug.
-
D. Babacan, M. Luessi, R. Molina, and A. K. Katsaggelos, "SparseBayesian methods for low-rankmatrix estimation," IEEE Trans. SignalProcess., vol. 60, no. 8, pp. 3964-3977, Aug. 2012.
-
(2012)
IEEE Trans. SignalProcess.
, vol.60
, Issue.8
, pp. 3964-3977
-
-
Babacan, D.1
Luessi, M.2
Molina, R.3
Katsaggelos, A.K.4
-
14
-
-
84055212058
-
Toward a practical face recognition system: Robust alignment and illuminationby sparse representation
-
A. Wagner, J. Wright, A. Ganesh, Z. Zhou, H. Mobahi, and Y. Ma,"Toward a practical face recognition system: Robust alignment and illuminationby sparse representation," IEEE Trans. Pattern Anal.Mach.Intell., vol. 34, no. 2, pp. 372-386, 2012.
-
(2012)
IEEE Trans. Pattern Anal.Mach.Intell.
, vol.34
, Issue.2
, pp. 372-386
-
-
Wagner, A.1
Wright, J.2
Ganesh, A.3
Zhou, Z.4
Mobahi, H.5
Ma, Y.6
-
15
-
-
84870691575
-
Parallelizing principalcomponent analysis for robust facial recognition using CUDA
-
T. Goodall, S. Gibson, and M. C. Smith, "Parallelizing principalcomponent analysis for robust facial recognition using CUDA," Proc.Symp. App. Accelerators in High Perf. Comput., pp. 121-124, 2012.
-
(2012)
Proc.Symp. App. Accelerators in High Perf. Comput.
, pp. 121-124
-
-
Goodall, T.1
Gibson, S.2
Smith, M.C.3
-
16
-
-
0034297382
-
Latentsemantic indexing: A probabilistic analysis
-
C. H. Papadimitriou, P. Raghavan, H. Tamaki, and S. Vempala, "Latentsemantic indexing: A probabilistic analysis," Elsevier J. Comput. Syst.Sci., vol. 61, no. 2, pp. 217-235, 2000.
-
(2000)
Elsevier J. Comput. Syst.Sci.
, vol.61
, Issue.2
, pp. 217-235
-
-
Papadimitriou, C.H.1
Raghavan, P.2
Tamaki, H.3
Vempala, S.4
-
17
-
-
77956007151
-
RASL: Robustalignment by sparse and low-rank decomposition for linearly correlatedimages
-
Y. Peng, A. Ganesh, J. Wright, W. Xu, and Y. Ma, "RASL: Robustalignment by sparse and low-rank decomposition for linearly correlatedimages," in Proc. IEEE Conf. Comput. Vis. and Pattern Recognit.,2010, pp. 763-770.
-
(2010)
Proc. IEEE Conf. Comput. Vis. and Pattern Recognit.
, pp. 763-770
-
-
Peng, Y.1
Ganesh, A.2
Wright, J.3
Xu, W.4
Ma, Y.5
-
18
-
-
84867585384
-
Singing-voice separation from monaural recordings using robustprincipal component analysis
-
P. Huang, S. D. Chen, P. Smaragdis, and M. Hasegawa-Johnson, "Singing-voice separation from monaural recordings using robustprincipal component analysis," in Proc. IEEE Int. Conf. Acoustics,Speech and Signal Processing, 2012, pp. 57-60.
-
(2012)
Proc. IEEE Int. Conf. Acoustics,Speech and Signal Processing
, pp. 57-60
-
-
Huang, P.1
Chen, S.D.2
Smaragdis, P.3
Hasegawa-Johnson, M.4
-
19
-
-
84863072011
-
Face recovery in conference videostreaming using robust principal component analysis
-
W. Tan, G. Cheung, and Y. Ma, "Face recovery in conference videostreaming using robust principal component analysis," in Proc. 18thIEEE Int. Conf. Image Processing, 2011, pp. 3225-3228.
-
(2011)
Proc. 18thIEEE Int. Conf. Image Processing
, pp. 3225-3228
-
-
Tan, W.1
Cheung, G.2
Ma, Y.3
-
20
-
-
84875865091
-
Multi-task low-rank and sparse matrixrecovery for human motion segmentation
-
X. Wang, W. Wan, and G. Liu, "Multi-task low-rank and sparse matrixrecovery for human motion segmentation," in Proc. 19th IEEE Int.Conf. Image Processing, 2012, pp. 897-900.
-
(2012)
Proc. 19th IEEE Int.Conf. Image Processing
, pp. 897-900
-
-
Wang, X.1
Wan, W.2
Liu, G.3
-
21
-
-
84885362356
-
A variational approachfor sparse component estimation and low-rank matrix recovery
-
Z. Chen, R. Molina, and A. K. Katsaggelos, "A variational approachfor sparse component estimation and low-rank matrix recovery," J.Commun., vol. 8, no. 9, pp. 600-611, 2013.
-
(2013)
J.Commun.
, vol.8
, Issue.9
, pp. 600-611
-
-
Chen, Z.1
Molina, R.2
Katsaggelos, A.K.3
-
22
-
-
3543081155
-
-
Ph.D. dissertation, Univ. College London, London, U.K.
-
M. Beal, "Variational algorithms for approximate Bayesian inference,"Ph.D. dissertation, Univ. College London, London, U.K., 2003.
-
(2003)
Variational Algorithms for Approximate Bayesian Inference
-
-
Beal, M.1
-
23
-
-
0003994516
-
-
Ph.D. dissertation, Astrophysics Group, Univ. Cambridge, Cambridge,U.K.
-
J. Miskin, "Ensemble learning for independent component analysis,"Ph.D. dissertation, Astrophysics Group, Univ. Cambridge, Cambridge,U.K., 2000.
-
(2000)
Ensemble Learning for Independent Component Analysis
-
-
Miskin, J.1
-
25
-
-
0042685161
-
Bayesian parameter estimation viavariational methods
-
S. T. Jaakkola and I. M. Jordan, "Bayesian parameter estimation viavariational methods," Statist. Comput., vol. 10, no. 1, pp. 25-37, 2000.
-
(2000)
Statist. Comput.
, vol.10
, Issue.1
, pp. 25-37
-
-
Jaakkola, S.T.1
Jordan, I.M.2
-
26
-
-
85032751295
-
The variational approximationfor Bayesian inference
-
D. G. Tzikas, C. L. Likas, and N. P. Galatsanos, "The variational approximationfor Bayesian inference," IEEE Signal Process. Mag., vol.25, no. 6, pp. 131-146, 2008.
-
(2008)
IEEE Signal Process. Mag.
, vol.25
, Issue.6
, pp. 131-146
-
-
Tzikas, D.G.1
Likas, C.L.2
Galatsanos, N.P.3
-
27
-
-
84864561384
-
A tutorial on variational Bayesian inference
-
C. W. Fox and S. J. Roberts, "A tutorial on variational Bayesian inference,"Artif. Intell. Rev., vol. 38, no. 2, pp. 85-95, 2012.
-
(2012)
Artif. Intell. Rev.
, vol.38
, Issue.2
, pp. 85-95
-
-
Fox, C.W.1
Roberts, S.J.2
-
28
-
-
0034270644
-
Audio-visual speech modeling for continuousspeech recognition
-
S. Dupont and J. Luettin, "Audio-visual speech modeling for continuousspeech recognition," IEEE Trans. Multimedia, vol. 2, no. 3, pp.141-151, 2000.
-
(2000)
IEEE Trans. Multimedia
, vol.2
, Issue.3
, pp. 141-151
-
-
Dupont, S.1
Luettin, J.2
-
29
-
-
0036874999
-
DynamicBayesian networks for audio-visual speech recognition
-
A. V. Nefian, L. Liang, X. Pi, X. Liu, and K. P. Murphy, "DynamicBayesian networks for audio-visual speech recognition," EURASIP J.Adv. Signal Process., vol. 2002, no. 11, pp. 1274-1288, 2002.
-
(2002)
EURASIP J.Adv. Signal Process.
, vol.2002
, Issue.11
, pp. 1274-1288
-
-
Nefian, A.V.1
Liang, L.2
Pi, X.3
Liu, X.4
Murphy, K.P.5
-
30
-
-
33847007697
-
Sparse logistic regression with penalty for biomarker identification
-
Z. Liu, F. Jiang, G. Tian, S. Wang, F. Sato, S. Meltzer, and M. Tan,"Sparse logistic regression with penalty for biomarker identification,"Statist. App. Genet. Molec. Biol., vol. 6, no. 1, 2007.
-
(2007)
Statist. App. Genet. Molec. Biol.
, vol.6
, Issue.1
-
-
Liu, Z.1
Jiang, F.2
Tian, G.3
Wang, S.4
Sato, F.5
Meltzer, S.6
Tan, M.7
-
31
-
-
56049123212
-
Learning with vs-norm regularisationwith exponentially many irrelevant features
-
A. Kabán and R. Durrant, "Learning with vs-norm regularisationwith exponentially many irrelevant features," Mach. Learn. andKnowl. Discov. Databases, Lecture Notes in Comput. Sci., vol. 5211,pp. 580-596, 2008.
-
(2008)
Mach. Learn. AndKnowl. Discov. Databases, Lecture Notes in Comput. Sci.
, vol.5211
, pp. 580-596
-
-
Kabán, A.1
Durrant, R.2
-
33
-
-
0000935895
-
An introductionto variational methods for graphical models
-
Cambridge, MA, USA: MIT Press
-
M. I. Jordan, Z. Ghahramani, T. S. Jaakola, and L. K. Saul, "An introductionto variational methods for graphical models," in Learningin Graphical Models. Cambridge, MA, USA: MIT Press, 1998, pp.105-162.
-
(1998)
Learningin Graphical Models.
, pp. 105-162
-
-
Jordan, M.I.1
Ghahramani, Z.2
Jaakola, T.S.3
Saul, L.K.4
-
34
-
-
0021518209
-
Stochastic relaxation, gibbs distributions, and the bayesian restoration of images
-
S. S. Geman and D. Geman, "Stochastic relaxation, Gibbs distributionsand the Bayesian restoration of images," IEEE Trans. Pattern Anal.Mach. Intell., vol. 6, pp. 721-741, 1984. (Pubitemid 15453722)
-
(1984)
IEEE Transactions on Pattern Analysis and Machine Intelligence
, vol.PAMI-6
, Issue.6
, pp. 721-741
-
-
Geman Stuart1
Geman Donald2
-
35
-
-
78651441268
-
An introduction to Bayesian inference via variational approximations
-
J. Grimmer, "An introduction to Bayesian inference via variational approximations,"Polit. Anal., vol. 19, no. 1, pp. 32-47, 2010.
-
(2010)
Polit. Anal.
, vol.19
, Issue.1
, pp. 32-47
-
-
Grimmer, J.1
-
36
-
-
84867870431
-
Bayesianblind deconvolution with general sparse image priors
-
S. D. Babacan, R.Molina,M. N. Do, and A. K. Katsaggelos, "Bayesianblind deconvolution with general sparse image priors," in Proc. Eur.Conf. Computer Vision, 2012, pp. 341-355.
-
(2012)
Proc. Eur.Conf. Computer Vision
, pp. 341-355
-
-
Babacan, S.D.1
Molina, R.2
Do, M.N.3
Katsaggelos, A.K.4
-
37
-
-
0001224048
-
Sparse bayesian learning and the relevance vector machine
-
DOI 10.1162/15324430152748236
-
M. E. Tipping, "Sparse Bayesian learning and the relevance vector machine,"J. Mach. Learn. Res., vol. 1, pp. 211-244, 2001. (Pubitemid 33687203)
-
(2001)
Journal of Machine Learning Research
, vol.1
, Issue.3
, pp. 211-244
-
-
Tipping, M.E.1
-
38
-
-
84900990572
-
-
Ph.D. dissertation, Graz Univ. Technol., Graz,Austria
-
T. Buchgraber, "Variational sparse Bayesian learning: Centralized anddistributed processing," Ph.D. dissertation, Graz Univ. Technol., Graz,Austria, 2013.
-
(2013)
Variational Sparse Bayesian Learning: Centralized Anddistributed Processing
-
-
Buchgraber, T.1
-
39
-
-
0002629270
-
Maximum likelihoodfrom incomplete data via the E-M algorithm
-
A. D. Dempster, N. M. Laird, and D. B. Rubin, "Maximum likelihoodfrom incomplete data via the E-M algorithm," J. Roy. Statist. Soc., SeriesB, vol. 39, pp. 1-37, 1977.
-
(1977)
J. Roy. Statist. Soc., SeriesB
, vol.39
, pp. 1-37
-
-
Dempster, A.D.1
Laird, N.M.2
Rubin, D.B.3
-
42
-
-
0004267646
-
-
Princeton, NJ, USA: PrincetonUniv. Press
-
R. T. Rockafellar, Convex analysis. Princeton, NJ, USA: PrincetonUniv. Press, 1970.
-
(1970)
Convex Analysis
-
-
Rockafellar, R.T.1
-
43
-
-
84864068448
-
VariationalEM algorithms for non-Gaussian latent variable models
-
Y. Weiss,B. Schölkopf, and J. Platt, Eds. Cambridge, MA, USA: MIT Press
-
J. A. Palmer, K. Kreutz-Delgado, D. P. Wipf, and B. D. Rao, "VariationalEM algorithms for non-Gaussian latent variable models," inAdvances in Neural Information Processing Systems 18, Y. Weiss,B. Schölkopf, and J. Platt, Eds. Cambridge, MA, USA: MIT Press,2006, pp. 1059-1066.
-
(2006)
Advances in Neural Information Processing Systems
, vol.18
, pp. 1059-1066
-
-
Palmer, J.A.1
Kreutz-Delgado, K.2
Wipf, D.P.3
Rao, B.D.4
-
46
-
-
0038387331
-
-
Ph.D. dissertation, Massachusetts Inst. Technol., Cambridge,MA, USA
-
T. P. Minka, "A family of algorithms for approximate Bayesian inference,"Ph.D. dissertation, Massachusetts Inst. Technol., Cambridge,MA, USA, 2001.
-
(2001)
A Family of Algorithms for Approximate Bayesian Inference
-
-
Minka, T.P.1
-
49
-
-
58049218859
-
VariationalBayesian blind deconvolution using a total variation prior
-
Jan.
-
S. D. Babacan, R. Molina, and A. K. Katsaggelos, " VariationalBayesian blind deconvolution using a total variation prior," IEEETrans. Image Process., vol. 18, no. 1, pp. 12-26, Jan. 2009.
-
(2009)
IEEETrans. Image Process.
, vol.18
, Issue.1
, pp. 12-26
-
-
Babacan, S.D.1
Molina, R.2
Katsaggelos, A.K.3
-
50
-
-
27944462891
-
Background subtraction techniques
-
Reveal Limited, Auckland,New Zealand
-
A. M. McIvor, "Background subtraction techniques," in Proc. Imageand Vision Computing New Zealand 2000, Reveal Limited, Auckland,New Zealand.
-
(2000)
Proc. Imageand Vision Computing New Zealand
-
-
McIvor, A.M.1
-
51
-
-
15744378302
-
Background subtraction techniques: A review
-
2004 IEEE International Conference on Systems, Man and Cybernetics, SMC 2004
-
M. Piccardi, "Background subtraction techniques: A review," inProc. IEEE Int. Conf. Syst., Man and Cybernetics, 2004, vol. 4, pp.3099-3104. (Pubitemid 40408308)
-
(2004)
Conference Proceedings - IEEE International Conference on Systems, Man and Cybernetics
, vol.4
, pp. 3099-3104
-
-
Piccardi, M.1
-
52
-
-
34250315640
-
An overview of anomaly detection techniques: Existing solutions and latest technological trends
-
DOI 10.1016/j.comnet.2007.02.001, PII S138912860700062X
-
A. Patcha and J. Park, "An overview of anomaly detection techniques:Existing solutions and latest technological trends," Elsevier Comput.Netw., vol. 51, no. 12, pp. 3448-3470, 2007. (Pubitemid 46921030)
-
(2007)
Computer Networks
, vol.51
, Issue.12
, pp. 3448-3470
-
-
Patcha, A.1
Park, J.-M.2
-
53
-
-
68049121093
-
Anomaly detection: Asurvey
-
V. Chandola, A. Banerjee, and V. Kumar, "Anomaly detection: Asurvey," ACM Comput. Surveys, vol. 41, no. 3, pp. 151-1558,2009.
-
(2009)
ACM Comput. Surveys
, vol.41
, Issue.3
, pp. 151-1558
-
-
Chandola, V.1
Banerjee, A.2
Kumar, V.3
-
54
-
-
70450178502
-
Simultaneous image classification andannotation
-
C. Wang, D. Blei, and F. Li, "Simultaneous image classification andannotation," in Proc. IEEE Comput. Vision & Pattern Recognit., 2009,pp. 1903-1910.
-
(2009)
Proc. IEEE Comput. Vision & Pattern Recognit.
, pp. 1903-1910
-
-
Wang, C.1
Blei, D.2
Li, F.3
-
55
-
-
0141607824
-
Latent Dirichlet allocation
-
D.M. Blei, A. Y. Ng, andM. I. Jordan, "Latent Dirichlet allocation,"J. Mach. Learn. Res., vol. 3, pp. 993-1022, 2003.
-
(2003)
J. Mach. Learn. Res.
, vol.3
, pp. 993-1022
-
-
Blei, D.M.1
Ng, A.Y.2
Jordan, M.I.3
-
56
-
-
85161981998
-
Supervised topic models
-
J. Platt, D.Koller, Y. Singer, and S. Roweis, Eds. Cambridge, MA, USA: MITPress
-
D. M. Blei and J. D. McAuliffe, "Supervised topic models," inAdvances in Neural Information Processing Systems 20, J. Platt, D.Koller, Y. Singer, and S. Roweis, Eds. Cambridge, MA, USA: MITPress, 2008, pp. 121-128.
-
(2008)
Advances in Neural Information Processing Systems
, vol.20
, pp. 121-128
-
-
Blei, D.M.1
McAuliffe, J.D.2
-
57
-
-
84875420347
-
Learning topic models by beliefpropagation
-
J. Zeng, W. K. Cheung, and J. Liu, "Learning topic models by beliefpropagation," IEEE Trans. Pattern Anal. Mach. Intell., vol. 35, no. 5,pp. 1121-1134, 2013.
-
(2013)
IEEE Trans. Pattern Anal. Mach. Intell.
, vol.35
, Issue.5
, pp. 1121-1134
-
-
Zeng, J.1
Cheung, W.K.2
Liu, J.3
-
58
-
-
63849117955
-
Unsupervised activity perceptionin crowded and complicated scenes using hierarchical Bayesianmodels
-
X.Wang, X. Ma, and W. E. L. Grimson, "Unsupervised activity perceptionin crowded and complicated scenes using hierarchical Bayesianmodels," IEEE Trans. Pattern Anal. Mach. Intell., vol. 31, no. 3, pp.539-555, 2009.
-
(2009)
IEEE Trans. Pattern Anal. Mach. Intell.
, vol.31
, Issue.3
, pp. 539-555
-
-
Wang, X.1
Ma, X.2
Grimson, W.E.L.3
-
59
-
-
39749186006
-
LabelMe:A database and web-based tool for image annotation
-
B. C. Russell, A. Torralba, K. P. Murphy, and W. T. Freeman, "LabelMe:A database and web-based tool for image annotation," Int. J.Comput. Vision, vol. 77, no. 1-3, pp. 157-173, 2008.
-
(2008)
Int. J.Comput. Vision
, vol.77
, Issue.1-3
, pp. 157-173
-
-
Russell, B.C.1
Torralba, A.2
Murphy, K.P.3
Freeman, W.T.4
-
60
-
-
3042741069
-
VariationalBayesian estimation and clustering for speech recognition
-
S. Watanabe, Y. Minami, A. Nakamura, and N. Ueda, " VariationalBayesian estimation and clustering for speech recognition," IEEETrans. Speech Audio Process., vol. 12, no. 4, pp. 365-381, 2004.
-
(2004)
IEEETrans. Speech Audio Process.
, vol.12
, Issue.4
, pp. 365-381
-
-
Watanabe, S.1
Minami, Y.2
Nakamura, A.3
Ueda, N.4
-
62
-
-
0042671302
-
Variational Bayesian inference for fMRI time series
-
DOI 10.1016/S1053-8119(03)00071-5
-
W. Penny, S. Kiebel, and K. Friston, "Variational Bayesian inferencefor fMRI time series," NeuroImage, vol. 19, no. 3, pp. 727-741, 2003. (Pubitemid 36918216)
-
(2003)
NeuroImage
, vol.19
, Issue.3
, pp. 727-741
-
-
Penny, W.1
Kiebel, S.2
Friston, K.3
-
63
-
-
58449083065
-
Patch-based video processing: A variationalBayesian approach
-
X. Li and Y. Zheng, "Patch-based video processing: A variationalBayesian approach," IEEE Trans. Circuits Syst. Video Technol., vol.19, no. 1, pp. 27-40, 2009.
-
(2009)
IEEE Trans. Circuits Syst. Video Technol.
, vol.19
, Issue.1
, pp. 27-40
-
-
Li, X.1
Zheng, Y.2
-
64
-
-
42649106507
-
Infinite Hidden Markov models for unusual-event detection in video
-
DOI 10.1109/TIP.2008.919359
-
I. Pruteanu-Malinici and L. Carin, "Infinite hidden Markov models forunusual-event detection in video," IEEE Trans. Image Process., vol.17, no. 5, pp. 811-822, May 2008. (Pubitemid 351597171)
-
(2008)
IEEE Transactions on Image Processing
, vol.17
, Issue.5
, pp. 811-822
-
-
Pruteanu-Malinici, I.1
Carin, L.2
-
65
-
-
73249137938
-
Gaussian process approach to remote sensingimage classification
-
Y. Bazi and F.Melgani, "Gaussian process approach to remote sensingimage classification," IEEE Trans. Geosci. Remote Sens., vol. 48, no.1, pp. 196-197, 2010.
-
(2010)
IEEE Trans. Geosci. Remote Sens.
, vol.48
, Issue.1
, pp. 196-197
-
-
Bazi, Y.1
Melgani, F.2
-
66
-
-
66549091977
-
Classification of hyperspectral remotesensing images using Gaussian processes
-
Y. Bazi and F. Melgani, "Classification of hyperspectral remotesensing images using Gaussian processes," in Proc. IEEE Int. Geoscienceand Remote Sensing Symp., 2008, pp. 1013-1016.
-
(2008)
Proc. IEEE Int. Geoscienceand Remote Sensing Symp.
, pp. 1013-1016
-
-
Bazi, Y.1
Melgani, F.2
|