메뉴 건너뛰기




Volumn 16, Issue 4, 2014, Pages 1000-1017

Variational bayesian methods for multimedia problems

Author keywords

Bayes methods; graphical models; inverse problems; multimedia signal processing; variational Bayes

Indexed keywords

BAYESIAN NETWORKS; GRAPHIC METHODS; INFERENCE ENGINES; INVERSE PROBLEMS; MULTIMEDIA SIGNAL PROCESSING; PROBABILITY DISTRIBUTIONS; STOCHASTIC SYSTEMS;

EID: 84901054636     PISSN: 15209210     EISSN: None     Source Type: Journal    
DOI: 10.1109/TMM.2014.2307692     Document Type: Article
Times cited : (28)

References (66)
  • 4
    • 3242717928 scopus 로고    scopus 로고
    • Recovering the missing components in a largenoisy low-rank matrix: Application to SFM
    • P. Chen and D. Suter, "Recovering the missing components in a largenoisy low-rank matrix: Application to SFM," IEEE Trans. PatternAnal. Mach. Intell., vol. 26, no. 8, pp. 1051-1063, 2004.
    • (2004) IEEE Trans. PatternAnal. Mach. Intell. , vol.26 , Issue.8 , pp. 1051-1063
    • Chen, P.1    Suter, D.2
  • 7
    • 26944457949 scopus 로고    scopus 로고
    • Ph.D. dissertation,Massachusetts Inst. Technol., Cambridge, MA, USA
    • N. Srebro, "Learning with matrix factorization," Ph.D. dissertation,Massachusetts Inst. Technol., Cambridge, MA, USA, 2004.
    • (2004) Learning with Matrix Factorization
    • Srebro, N.1
  • 8
    • 72549110327 scopus 로고    scopus 로고
    • Interior-point method for nuclear normapproximation with application to system identification
    • Z. Liu and L. Vandenberghe, "Interior-point method for nuclear normapproximation with application to system identification," SIAM J. MatrixAnal. Applicat., vol. 31, no. 3, pp. 1235-1256, 2009.
    • (2009) SIAM J. MatrixAnal. Applicat. , vol.31 , Issue.3 , pp. 1235-1256
    • Liu, Z.1    Vandenberghe, L.2
  • 9
    • 77954824901 scopus 로고    scopus 로고
    • Sensor network localizationfrom local connectivity: Performance analysis for the MDS-MAP algorithm
    • S. Oh, A. Montanari, and L. Karbasi, "Sensor network localizationfrom local connectivity: Performance analysis for the MDS-MAP algorithm,"in Proc. IEEE Information Theory Workshop, 2010, pp. 1-5.
    • (2010) Proc. IEEE Information Theory Workshop , pp. 1-5
    • Oh, S.1    Montanari, A.2    Karbasi, L.3
  • 13
    • 84863899797 scopus 로고    scopus 로고
    • SparseBayesian methods for low-rankmatrix estimation
    • Aug.
    • D. Babacan, M. Luessi, R. Molina, and A. K. Katsaggelos, "SparseBayesian methods for low-rankmatrix estimation," IEEE Trans. SignalProcess., vol. 60, no. 8, pp. 3964-3977, Aug. 2012.
    • (2012) IEEE Trans. SignalProcess. , vol.60 , Issue.8 , pp. 3964-3977
    • Babacan, D.1    Luessi, M.2    Molina, R.3    Katsaggelos, A.K.4
  • 14
    • 84055212058 scopus 로고    scopus 로고
    • Toward a practical face recognition system: Robust alignment and illuminationby sparse representation
    • A. Wagner, J. Wright, A. Ganesh, Z. Zhou, H. Mobahi, and Y. Ma,"Toward a practical face recognition system: Robust alignment and illuminationby sparse representation," IEEE Trans. Pattern Anal.Mach.Intell., vol. 34, no. 2, pp. 372-386, 2012.
    • (2012) IEEE Trans. Pattern Anal.Mach.Intell. , vol.34 , Issue.2 , pp. 372-386
    • Wagner, A.1    Wright, J.2    Ganesh, A.3    Zhou, Z.4    Mobahi, H.5    Ma, Y.6
  • 19
    • 84863072011 scopus 로고    scopus 로고
    • Face recovery in conference videostreaming using robust principal component analysis
    • W. Tan, G. Cheung, and Y. Ma, "Face recovery in conference videostreaming using robust principal component analysis," in Proc. 18thIEEE Int. Conf. Image Processing, 2011, pp. 3225-3228.
    • (2011) Proc. 18thIEEE Int. Conf. Image Processing , pp. 3225-3228
    • Tan, W.1    Cheung, G.2    Ma, Y.3
  • 20
    • 84875865091 scopus 로고    scopus 로고
    • Multi-task low-rank and sparse matrixrecovery for human motion segmentation
    • X. Wang, W. Wan, and G. Liu, "Multi-task low-rank and sparse matrixrecovery for human motion segmentation," in Proc. 19th IEEE Int.Conf. Image Processing, 2012, pp. 897-900.
    • (2012) Proc. 19th IEEE Int.Conf. Image Processing , pp. 897-900
    • Wang, X.1    Wan, W.2    Liu, G.3
  • 21
    • 84885362356 scopus 로고    scopus 로고
    • A variational approachfor sparse component estimation and low-rank matrix recovery
    • Z. Chen, R. Molina, and A. K. Katsaggelos, "A variational approachfor sparse component estimation and low-rank matrix recovery," J.Commun., vol. 8, no. 9, pp. 600-611, 2013.
    • (2013) J.Commun. , vol.8 , Issue.9 , pp. 600-611
    • Chen, Z.1    Molina, R.2    Katsaggelos, A.K.3
  • 25
    • 0042685161 scopus 로고    scopus 로고
    • Bayesian parameter estimation viavariational methods
    • S. T. Jaakkola and I. M. Jordan, "Bayesian parameter estimation viavariational methods," Statist. Comput., vol. 10, no. 1, pp. 25-37, 2000.
    • (2000) Statist. Comput. , vol.10 , Issue.1 , pp. 25-37
    • Jaakkola, S.T.1    Jordan, I.M.2
  • 26
    • 85032751295 scopus 로고    scopus 로고
    • The variational approximationfor Bayesian inference
    • D. G. Tzikas, C. L. Likas, and N. P. Galatsanos, "The variational approximationfor Bayesian inference," IEEE Signal Process. Mag., vol.25, no. 6, pp. 131-146, 2008.
    • (2008) IEEE Signal Process. Mag. , vol.25 , Issue.6 , pp. 131-146
    • Tzikas, D.G.1    Likas, C.L.2    Galatsanos, N.P.3
  • 27
    • 84864561384 scopus 로고    scopus 로고
    • A tutorial on variational Bayesian inference
    • C. W. Fox and S. J. Roberts, "A tutorial on variational Bayesian inference,"Artif. Intell. Rev., vol. 38, no. 2, pp. 85-95, 2012.
    • (2012) Artif. Intell. Rev. , vol.38 , Issue.2 , pp. 85-95
    • Fox, C.W.1    Roberts, S.J.2
  • 28
    • 0034270644 scopus 로고    scopus 로고
    • Audio-visual speech modeling for continuousspeech recognition
    • S. Dupont and J. Luettin, "Audio-visual speech modeling for continuousspeech recognition," IEEE Trans. Multimedia, vol. 2, no. 3, pp.141-151, 2000.
    • (2000) IEEE Trans. Multimedia , vol.2 , Issue.3 , pp. 141-151
    • Dupont, S.1    Luettin, J.2
  • 29
    • 0036874999 scopus 로고    scopus 로고
    • DynamicBayesian networks for audio-visual speech recognition
    • A. V. Nefian, L. Liang, X. Pi, X. Liu, and K. P. Murphy, "DynamicBayesian networks for audio-visual speech recognition," EURASIP J.Adv. Signal Process., vol. 2002, no. 11, pp. 1274-1288, 2002.
    • (2002) EURASIP J.Adv. Signal Process. , vol.2002 , Issue.11 , pp. 1274-1288
    • Nefian, A.V.1    Liang, L.2    Pi, X.3    Liu, X.4    Murphy, K.P.5
  • 33
    • 0000935895 scopus 로고    scopus 로고
    • An introductionto variational methods for graphical models
    • Cambridge, MA, USA: MIT Press
    • M. I. Jordan, Z. Ghahramani, T. S. Jaakola, and L. K. Saul, "An introductionto variational methods for graphical models," in Learningin Graphical Models. Cambridge, MA, USA: MIT Press, 1998, pp.105-162.
    • (1998) Learningin Graphical Models. , pp. 105-162
    • Jordan, M.I.1    Ghahramani, Z.2    Jaakola, T.S.3    Saul, L.K.4
  • 35
    • 78651441268 scopus 로고    scopus 로고
    • An introduction to Bayesian inference via variational approximations
    • J. Grimmer, "An introduction to Bayesian inference via variational approximations,"Polit. Anal., vol. 19, no. 1, pp. 32-47, 2010.
    • (2010) Polit. Anal. , vol.19 , Issue.1 , pp. 32-47
    • Grimmer, J.1
  • 37
    • 0001224048 scopus 로고    scopus 로고
    • Sparse bayesian learning and the relevance vector machine
    • DOI 10.1162/15324430152748236
    • M. E. Tipping, "Sparse Bayesian learning and the relevance vector machine,"J. Mach. Learn. Res., vol. 1, pp. 211-244, 2001. (Pubitemid 33687203)
    • (2001) Journal of Machine Learning Research , vol.1 , Issue.3 , pp. 211-244
    • Tipping, M.E.1
  • 39
    • 0002629270 scopus 로고
    • Maximum likelihoodfrom incomplete data via the E-M algorithm
    • A. D. Dempster, N. M. Laird, and D. B. Rubin, "Maximum likelihoodfrom incomplete data via the E-M algorithm," J. Roy. Statist. Soc., SeriesB, vol. 39, pp. 1-37, 1977.
    • (1977) J. Roy. Statist. Soc., SeriesB , vol.39 , pp. 1-37
    • Dempster, A.D.1    Laird, N.M.2    Rubin, D.B.3
  • 42
    • 0004267646 scopus 로고
    • Princeton, NJ, USA: PrincetonUniv. Press
    • R. T. Rockafellar, Convex analysis. Princeton, NJ, USA: PrincetonUniv. Press, 1970.
    • (1970) Convex Analysis
    • Rockafellar, R.T.1
  • 43
    • 84864068448 scopus 로고    scopus 로고
    • VariationalEM algorithms for non-Gaussian latent variable models
    • Y. Weiss,B. Schölkopf, and J. Platt, Eds. Cambridge, MA, USA: MIT Press
    • J. A. Palmer, K. Kreutz-Delgado, D. P. Wipf, and B. D. Rao, "VariationalEM algorithms for non-Gaussian latent variable models," inAdvances in Neural Information Processing Systems 18, Y. Weiss,B. Schölkopf, and J. Platt, Eds. Cambridge, MA, USA: MIT Press,2006, pp. 1059-1066.
    • (2006) Advances in Neural Information Processing Systems , vol.18 , pp. 1059-1066
    • Palmer, J.A.1    Kreutz-Delgado, K.2    Wipf, D.P.3    Rao, B.D.4
  • 49
    • 58049218859 scopus 로고    scopus 로고
    • VariationalBayesian blind deconvolution using a total variation prior
    • Jan.
    • S. D. Babacan, R. Molina, and A. K. Katsaggelos, " VariationalBayesian blind deconvolution using a total variation prior," IEEETrans. Image Process., vol. 18, no. 1, pp. 12-26, Jan. 2009.
    • (2009) IEEETrans. Image Process. , vol.18 , Issue.1 , pp. 12-26
    • Babacan, S.D.1    Molina, R.2    Katsaggelos, A.K.3
  • 50
    • 27944462891 scopus 로고    scopus 로고
    • Background subtraction techniques
    • Reveal Limited, Auckland,New Zealand
    • A. M. McIvor, "Background subtraction techniques," in Proc. Imageand Vision Computing New Zealand 2000, Reveal Limited, Auckland,New Zealand.
    • (2000) Proc. Imageand Vision Computing New Zealand
    • McIvor, A.M.1
  • 52
    • 34250315640 scopus 로고    scopus 로고
    • An overview of anomaly detection techniques: Existing solutions and latest technological trends
    • DOI 10.1016/j.comnet.2007.02.001, PII S138912860700062X
    • A. Patcha and J. Park, "An overview of anomaly detection techniques:Existing solutions and latest technological trends," Elsevier Comput.Netw., vol. 51, no. 12, pp. 3448-3470, 2007. (Pubitemid 46921030)
    • (2007) Computer Networks , vol.51 , Issue.12 , pp. 3448-3470
    • Patcha, A.1    Park, J.-M.2
  • 53
  • 56
    • 85161981998 scopus 로고    scopus 로고
    • Supervised topic models
    • J. Platt, D.Koller, Y. Singer, and S. Roweis, Eds. Cambridge, MA, USA: MITPress
    • D. M. Blei and J. D. McAuliffe, "Supervised topic models," inAdvances in Neural Information Processing Systems 20, J. Platt, D.Koller, Y. Singer, and S. Roweis, Eds. Cambridge, MA, USA: MITPress, 2008, pp. 121-128.
    • (2008) Advances in Neural Information Processing Systems , vol.20 , pp. 121-128
    • Blei, D.M.1    McAuliffe, J.D.2
  • 58
    • 63849117955 scopus 로고    scopus 로고
    • Unsupervised activity perceptionin crowded and complicated scenes using hierarchical Bayesianmodels
    • X.Wang, X. Ma, and W. E. L. Grimson, "Unsupervised activity perceptionin crowded and complicated scenes using hierarchical Bayesianmodels," IEEE Trans. Pattern Anal. Mach. Intell., vol. 31, no. 3, pp.539-555, 2009.
    • (2009) IEEE Trans. Pattern Anal. Mach. Intell. , vol.31 , Issue.3 , pp. 539-555
    • Wang, X.1    Ma, X.2    Grimson, W.E.L.3
  • 59
    • 39749186006 scopus 로고    scopus 로고
    • LabelMe:A database and web-based tool for image annotation
    • B. C. Russell, A. Torralba, K. P. Murphy, and W. T. Freeman, "LabelMe:A database and web-based tool for image annotation," Int. J.Comput. Vision, vol. 77, no. 1-3, pp. 157-173, 2008.
    • (2008) Int. J.Comput. Vision , vol.77 , Issue.1-3 , pp. 157-173
    • Russell, B.C.1    Torralba, A.2    Murphy, K.P.3    Freeman, W.T.4
  • 60
    • 3042741069 scopus 로고    scopus 로고
    • VariationalBayesian estimation and clustering for speech recognition
    • S. Watanabe, Y. Minami, A. Nakamura, and N. Ueda, " VariationalBayesian estimation and clustering for speech recognition," IEEETrans. Speech Audio Process., vol. 12, no. 4, pp. 365-381, 2004.
    • (2004) IEEETrans. Speech Audio Process. , vol.12 , Issue.4 , pp. 365-381
    • Watanabe, S.1    Minami, Y.2    Nakamura, A.3    Ueda, N.4
  • 61
    • 33745203547 scopus 로고    scopus 로고
    • Dynamic language model adaptation using variational bayes inference
    • 9th European Conference on Speech Communication and Technology, Eurospeech Interspeech
    • Y. Tam and T. Schultz, "Dynamic language model adaptation usingvariational Bayes inference," in Proc. INTERSPEECH, 2005, pp. 5-8. (Pubitemid 43907987)
    • (2005) 9th European Conference on Speech Communication and Technology , pp. 5-8
    • Tam, Y.-C.1    Schultz, T.2
  • 62
    • 0042671302 scopus 로고    scopus 로고
    • Variational Bayesian inference for fMRI time series
    • DOI 10.1016/S1053-8119(03)00071-5
    • W. Penny, S. Kiebel, and K. Friston, "Variational Bayesian inferencefor fMRI time series," NeuroImage, vol. 19, no. 3, pp. 727-741, 2003. (Pubitemid 36918216)
    • (2003) NeuroImage , vol.19 , Issue.3 , pp. 727-741
    • Penny, W.1    Kiebel, S.2    Friston, K.3
  • 63
    • 58449083065 scopus 로고    scopus 로고
    • Patch-based video processing: A variationalBayesian approach
    • X. Li and Y. Zheng, "Patch-based video processing: A variationalBayesian approach," IEEE Trans. Circuits Syst. Video Technol., vol.19, no. 1, pp. 27-40, 2009.
    • (2009) IEEE Trans. Circuits Syst. Video Technol. , vol.19 , Issue.1 , pp. 27-40
    • Li, X.1    Zheng, Y.2
  • 64
    • 42649106507 scopus 로고    scopus 로고
    • Infinite Hidden Markov models for unusual-event detection in video
    • DOI 10.1109/TIP.2008.919359
    • I. Pruteanu-Malinici and L. Carin, "Infinite hidden Markov models forunusual-event detection in video," IEEE Trans. Image Process., vol.17, no. 5, pp. 811-822, May 2008. (Pubitemid 351597171)
    • (2008) IEEE Transactions on Image Processing , vol.17 , Issue.5 , pp. 811-822
    • Pruteanu-Malinici, I.1    Carin, L.2
  • 65
    • 73249137938 scopus 로고    scopus 로고
    • Gaussian process approach to remote sensingimage classification
    • Y. Bazi and F.Melgani, "Gaussian process approach to remote sensingimage classification," IEEE Trans. Geosci. Remote Sens., vol. 48, no.1, pp. 196-197, 2010.
    • (2010) IEEE Trans. Geosci. Remote Sens. , vol.48 , Issue.1 , pp. 196-197
    • Bazi, Y.1    Melgani, F.2
  • 66
    • 66549091977 scopus 로고    scopus 로고
    • Classification of hyperspectral remotesensing images using Gaussian processes
    • Y. Bazi and F. Melgani, "Classification of hyperspectral remotesensing images using Gaussian processes," in Proc. IEEE Int. Geoscienceand Remote Sensing Symp., 2008, pp. 1013-1016.
    • (2008) Proc. IEEE Int. Geoscienceand Remote Sensing Symp. , pp. 1013-1016
    • Bazi, Y.1    Melgani, F.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.