-
1
-
-
53949106970
-
Nanobiocatalysis and its potential applications
-
Kim J., et al. Nanobiocatalysis and its potential applications. Trends Biotechnol. 2008, 26:639-646.
-
(2008)
Trends Biotechnol.
, vol.26
, pp. 639-646
-
-
Kim, J.1
-
2
-
-
84872334138
-
Nanobiotechnology as a novel paradigm for enzyme immobilisation and stabilisation with potential applications in biodiesel production
-
Verma M.L., et al. Nanobiotechnology as a novel paradigm for enzyme immobilisation and stabilisation with potential applications in biodiesel production. Appl. Microbiol. Biotechnol. 2013, 97:23-39.
-
(2013)
Appl. Microbiol. Biotechnol.
, vol.97
, pp. 23-39
-
-
Verma, M.L.1
-
3
-
-
84871851202
-
Nanobiocatalysis in organic media: opportunities for enzymes in nanostructures
-
Ge J., et al. Nanobiocatalysis in organic media: opportunities for enzymes in nanostructures. Top. Catal. 2012, 55:1070-1080.
-
(2012)
Top. Catal.
, vol.55
, pp. 1070-1080
-
-
Ge, J.1
-
4
-
-
84857501798
-
Potential applications of enzymes immobilized on/in nano materials: a review
-
Ansari S.A., Husain Q. Potential applications of enzymes immobilized on/in nano materials: a review. Biotechnol. Adv. 2012, 30:512-523.
-
(2012)
Biotechnol. Adv.
, vol.30
, pp. 512-523
-
-
Ansari, S.A.1
Husain, Q.2
-
6
-
-
33947602594
-
Improvement of enzyme activity, stability and selectivity via immobilization techniques
-
Mateo C., et al. Improvement of enzyme activity, stability and selectivity via immobilization techniques. Enzyme Microb. Technol. 2007, 40:1451-1463.
-
(2007)
Enzyme Microb. Technol.
, vol.40
, pp. 1451-1463
-
-
Mateo, C.1
-
7
-
-
78649806814
-
Engineering the nanoparticle-protein interface: applications and possibilities
-
Rana S., et al. Engineering the nanoparticle-protein interface: applications and possibilities. Curr. Opin. Chem. Biol. 2010, 14:828-834.
-
(2010)
Curr. Opin. Chem. Biol.
, vol.14
, pp. 828-834
-
-
Rana, S.1
-
8
-
-
0041528514
-
Immobilizing enzymes: how to create more suitable biocatalysts
-
Bornscheuer U.T. Immobilizing enzymes: how to create more suitable biocatalysts. Angew. Chem. Int. Ed. Engl. 2003, 42:3336-3337.
-
(2003)
Angew. Chem. Int. Ed. Engl.
, vol.42
, pp. 3336-3337
-
-
Bornscheuer, U.T.1
-
10
-
-
84857501859
-
Immobilization strategies to develop enzymatic biosensors
-
Sassolas A., et al. Immobilization strategies to develop enzymatic biosensors. Biotechnol. Adv. 2012, 30:489-511.
-
(2012)
Biotechnol. Adv.
, vol.30
, pp. 489-511
-
-
Sassolas, A.1
-
11
-
-
79952197637
-
Enzyme nanoparticle fabrication: magnetic nanoparticle synthesis and enzyme immobilization
-
Johnson P.A., et al. Enzyme nanoparticle fabrication: magnetic nanoparticle synthesis and enzyme immobilization. Methods Mol. Biol. 2011, 679:183-191.
-
(2011)
Methods Mol. Biol.
, vol.679
, pp. 183-191
-
-
Johnson, P.A.1
-
12
-
-
79551634368
-
Two-dimensional nanosheets produced by liquid exfoliation of layered materials
-
Coleman J.N., et al. Two-dimensional nanosheets produced by liquid exfoliation of layered materials. Science 2011, 331:568-571.
-
(2011)
Science
, vol.331
, pp. 568-571
-
-
Coleman, J.N.1
-
13
-
-
84879268263
-
Liquid exfoliation of layered materials
-
Nicolosi V., et al. Liquid exfoliation of layered materials. Science 2013, 340. 10.1126/science.1226419.
-
(2013)
Science
, vol.340
-
-
Nicolosi, V.1
-
14
-
-
84876471695
-
Prospects and challenges of graphene in biomedical applications
-
Bitounis D., et al. Prospects and challenges of graphene in biomedical applications. Adv. Mater. 2013, 25:2258-2268.
-
(2013)
Adv. Mater.
, vol.25
, pp. 2258-2268
-
-
Bitounis, D.1
-
15
-
-
84870004859
-
Graphene-based materials for biosensing and bioimaging
-
Du D., et al. Graphene-based materials for biosensing and bioimaging. MRS Bull. 2012, 37:1290-1296.
-
(2012)
MRS Bull.
, vol.37
, pp. 1290-1296
-
-
Du, D.1
-
16
-
-
84887653585
-
Graphene-based nanomaterials for drug delivery and tissue engineering
-
Goenka S., et al. Graphene-based nanomaterials for drug delivery and tissue engineering. J. Control. Release 2014, 173:75-88.
-
(2014)
J. Control. Release
, vol.173
, pp. 75-88
-
-
Goenka, S.1
-
17
-
-
84885113553
-
Graphene-based nanomaterials for nanobiotechnology and biomedical applications
-
Krishna K.V., et al. Graphene-based nanomaterials for nanobiotechnology and biomedical applications. Nanomedicine 2013, 8:1669-1688.
-
(2013)
Nanomedicine
, vol.8
, pp. 1669-1688
-
-
Krishna, K.V.1
-
19
-
-
79954657367
-
Graphene and graphene oxide: biofunctionalization and applications in biotechnology
-
Wang Y., et al. Graphene and graphene oxide: biofunctionalization and applications in biotechnology. Trends Biotechnol. 2011, 29:205-212.
-
(2011)
Trends Biotechnol.
, vol.29
, pp. 205-212
-
-
Wang, Y.1
-
20
-
-
84874152061
-
Immobilization of cellulase on magnetoresponsive graphene nano-supports
-
Gokhale A.A., et al. Immobilization of cellulase on magnetoresponsive graphene nano-supports. J. Mol. Catal. B: Enzym. 2013, 90:76-86.
-
(2013)
J. Mol. Catal. B: Enzym.
, vol.90
, pp. 76-86
-
-
Gokhale, A.A.1
-
21
-
-
84862852658
-
Functionalized graphene oxide in enzyme engineering: a selective modulator for enzyme activity and thermostability
-
Jin L., et al. Functionalized graphene oxide in enzyme engineering: a selective modulator for enzyme activity and thermostability. ACS Nano 2012, 6:4864-4875.
-
(2012)
ACS Nano
, vol.6
, pp. 4864-4875
-
-
Jin, L.1
-
22
-
-
84858340798
-
Development of effective nanobiocatalytic systems through the immobilization of hydrolases on functionalized carbon-based nanomaterials
-
Pavlidis I.V., et al. Development of effective nanobiocatalytic systems through the immobilization of hydrolases on functionalized carbon-based nanomaterials. Bioresour. Technol. 2012, 115:164-171.
-
(2012)
Bioresour. Technol.
, vol.115
, pp. 164-171
-
-
Pavlidis, I.V.1
-
23
-
-
84872717597
-
Functionalization of graphene for efficient energy conversion and storage
-
Dai L. Functionalization of graphene for efficient energy conversion and storage. Acc. Chem. Res. 2013, 46:31-42.
-
(2013)
Acc. Chem. Res.
, vol.46
, pp. 31-42
-
-
Dai, L.1
-
24
-
-
77949392996
-
The chemistry of graphene
-
Loh K.P., et al. The chemistry of graphene. J. Mater. Chem. 2010, 20:2277-2289.
-
(2010)
J. Mater. Chem.
, vol.20
, pp. 2277-2289
-
-
Loh, K.P.1
-
25
-
-
53849085330
-
Nano-graphene oxide for cellular imaging and drug delivery
-
Sun X., et al. Nano-graphene oxide for cellular imaging and drug delivery. Nano Res. 2008, 1:203-212.
-
(2008)
Nano Res.
, vol.1
, pp. 203-212
-
-
Sun, X.1
-
26
-
-
79960638579
-
Graphene oxide-peptide conjugate as an intracellular protease sensor for caspase-3 activation imaging in live cells
-
Wang H., et al. Graphene oxide-peptide conjugate as an intracellular protease sensor for caspase-3 activation imaging in live cells. Angew. Chem. Int. Ed. Engl. 2011, 50:7065-7069.
-
(2011)
Angew. Chem. Int. Ed. Engl.
, vol.50
, pp. 7065-7069
-
-
Wang, H.1
-
27
-
-
84872354545
-
A graphene oxide-photosensitizer complex as an enzyme-activatable theranostic agent
-
Cho Y., et al. A graphene oxide-photosensitizer complex as an enzyme-activatable theranostic agent. Chem. Commun. (Camb.) 2013, 49:1202-1204.
-
(2013)
Chem. Commun. (Camb.)
, vol.49
, pp. 1202-1204
-
-
Cho, Y.1
-
28
-
-
79960452977
-
Recent advances in graphene-based biosensors
-
Kuila T., et al. Recent advances in graphene-based biosensors. Biosens. Bioelectron. 2011, 26:4637-4648.
-
(2011)
Biosens. Bioelectron.
, vol.26
, pp. 4637-4648
-
-
Kuila, T.1
-
29
-
-
84877336107
-
Immobilization techniques in the fabrication of nanomaterial-based electrochemical biosensors: a review
-
Putzbach W., Ronkainen N.J. Immobilization techniques in the fabrication of nanomaterial-based electrochemical biosensors: a review. Sensors 2013, 13:4811-4840.
-
(2013)
Sensors
, vol.13
, pp. 4811-4840
-
-
Putzbach, W.1
Ronkainen, N.J.2
-
30
-
-
84883876329
-
Nanomaterials for bio-functionalized electrodes: recent trends
-
Walcarius A., et al. Nanomaterials for bio-functionalized electrodes: recent trends. J. Mater. Chem. B 2013, 1:4878-4908.
-
(2013)
J. Mater. Chem. B
, vol.1
, pp. 4878-4908
-
-
Walcarius, A.1
-
31
-
-
81855194721
-
Immobilization of trypsin in the layer-by-layer coating of graphene oxide and chitosan on in-channel glass fiber for microfluidic proteolysis
-
Bao H., et al. Immobilization of trypsin in the layer-by-layer coating of graphene oxide and chitosan on in-channel glass fiber for microfluidic proteolysis. Analyst 2011, 136:5190-5196.
-
(2011)
Analyst
, vol.136
, pp. 5190-5196
-
-
Bao, H.1
-
32
-
-
84885379701
-
Construction of graphene oxide magnetic nanocomposites-based on-chip enzymatic microreactor for ultrasensitive pesticide detection
-
Liang R.P., et al. Construction of graphene oxide magnetic nanocomposites-based on-chip enzymatic microreactor for ultrasensitive pesticide detection. J. Chromatogr. A 2013, 1315:28-35.
-
(2013)
J. Chromatogr. A
, vol.1315
, pp. 28-35
-
-
Liang, R.P.1
-
33
-
-
34247191269
-
Nanobiotechnology: protein-nanomaterial interactions
-
Kane R.S., Stroock A.D. Nanobiotechnology: protein-nanomaterial interactions. Biotechnol. Prog. 2007, 23:316-319.
-
(2007)
Biotechnol. Prog.
, vol.23
, pp. 316-319
-
-
Kane, R.S.1
Stroock, A.D.2
-
34
-
-
84865020679
-
Hydrophilic immobilized trypsin reactor with magnetic graphene oxide as support for high efficient proteome digestion
-
Jiang B., et al. Hydrophilic immobilized trypsin reactor with magnetic graphene oxide as support for high efficient proteome digestion. J. Chromatogr. A 2012, 1254:8-13.
-
(2012)
J. Chromatogr. A
, vol.1254
, pp. 8-13
-
-
Jiang, B.1
-
35
-
-
84859200684
-
Regulation of catalytic behaviour of hydrolases through interactions with functionalized carbon-based nanomaterials
-
Pavlidis I.V., et al. Regulation of catalytic behaviour of hydrolases through interactions with functionalized carbon-based nanomaterials. J. Nanopart. Res. 2012, 14. 10.1007/s11051-012-0842-4.
-
(2012)
J. Nanopart. Res.
, vol.14
-
-
Pavlidis, I.V.1
-
36
-
-
84862274437
-
Insight into the effects of graphene oxide sheets on the conformation and activity of glucose oxidase: towards developing a nanomaterial-based protein conformation assay
-
Shao Q., et al. Insight into the effects of graphene oxide sheets on the conformation and activity of glucose oxidase: towards developing a nanomaterial-based protein conformation assay. Phys. Chem. Chem. Phys. 2012, 14:9076-9085.
-
(2012)
Phys. Chem. Chem. Phys.
, vol.14
, pp. 9076-9085
-
-
Shao, Q.1
-
37
-
-
84855447240
-
Assembly of graphene oxide-enzyme conjugates through hydrophobic interaction
-
Zhang Y., et al. Assembly of graphene oxide-enzyme conjugates through hydrophobic interaction. Small 2012, 8:154-159.
-
(2012)
Small
, vol.8
, pp. 154-159
-
-
Zhang, Y.1
-
38
-
-
75749134159
-
Graphene oxide-facilitated electron transfer of metalloproteins at electrode surfaces
-
Zuo X., et al. Graphene oxide-facilitated electron transfer of metalloproteins at electrode surfaces. Langmuir 2010, 26:1936-1939.
-
(2010)
Langmuir
, vol.26
, pp. 1936-1939
-
-
Zuo, X.1
-
39
-
-
84877684109
-
Graphene oxide-induced conformation changes of glucose oxidase studied by infrared spectroscopy
-
Shao Q., et al. Graphene oxide-induced conformation changes of glucose oxidase studied by infrared spectroscopy. Colloids Surf. B: Biointerfaces 2013, 109:115-120.
-
(2013)
Colloids Surf. B: Biointerfaces
, vol.109
, pp. 115-120
-
-
Shao, Q.1
-
40
-
-
77951678756
-
Graphene oxide as a matrix for enzyme immobilization
-
Zhang J., et al. Graphene oxide as a matrix for enzyme immobilization. Langmuir 2010, 26:6083-6085.
-
(2010)
Langmuir
, vol.26
, pp. 6083-6085
-
-
Zhang, J.1
-
41
-
-
84880078753
-
Enhancement of cytochrome c catalytic behaviour by affecting the heme environment using functionalized carbon-based nanomaterials
-
Patila M., et al. Enhancement of cytochrome c catalytic behaviour by affecting the heme environment using functionalized carbon-based nanomaterials. Proc. Biochem. 2013, 48:1010-1017.
-
(2013)
Proc. Biochem.
, vol.48
, pp. 1010-1017
-
-
Patila, M.1
-
42
-
-
84876278357
-
Surface topography effects in protein adsorption on nanostructured carbon allotropes
-
Raffaini G., Ganazzoli F. Surface topography effects in protein adsorption on nanostructured carbon allotropes. Langmuir 2013, 29:4883-4893.
-
(2013)
Langmuir
, vol.29
, pp. 4883-4893
-
-
Raffaini, G.1
Ganazzoli, F.2
-
43
-
-
84883382094
-
Contrasting modulation of enzyme activity exhibited by graphene oxide and reduced graphene
-
Yang X., et al. Contrasting modulation of enzyme activity exhibited by graphene oxide and reduced graphene. Chem. Commun. (Comb.) 2013, 49:8611-8613.
-
(2013)
Chem. Commun. (Comb.)
, vol.49
, pp. 8611-8613
-
-
Yang, X.1
-
44
-
-
0002990922
-
Functionalization of carbon nanotubes for biocompatibility and biomolecular recognition
-
Shim M., et al. Functionalization of carbon nanotubes for biocompatibility and biomolecular recognition. Nano Lett. 2002, 2:285-288.
-
(2002)
Nano Lett.
, vol.2
, pp. 285-288
-
-
Shim, M.1
-
45
-
-
84880262320
-
Effects of surface curvature and surface characteristics of carbon-based nanomaterials on the adsorption and activity of acetylcholinesterase
-
Mesarič T., et al. Effects of surface curvature and surface characteristics of carbon-based nanomaterials on the adsorption and activity of acetylcholinesterase. Carbon 2013, 62:222-232.
-
(2013)
Carbon
, vol.62
, pp. 222-232
-
-
Mesarič, T.1
-
46
-
-
84878534495
-
Effect of graphene oxide on conformation and activity of catalase
-
Wei X.L., Ge Z.Q. Effect of graphene oxide on conformation and activity of catalase. Carbon 2013, 60:401-409.
-
(2013)
Carbon
, vol.60
, pp. 401-409
-
-
Wei, X.L.1
Ge, Z.Q.2
-
47
-
-
84877771644
-
Enzyme immobilization on carboxyl-functionalized graphene oxide for catalysis in organic solvent
-
Li Q., et al. Enzyme immobilization on carboxyl-functionalized graphene oxide for catalysis in organic solvent. Ind. Eng. Chem. Res. 2013, 52:6343-6348.
-
(2013)
Ind. Eng. Chem. Res.
, vol.52
, pp. 6343-6348
-
-
Li, Q.1
-
48
-
-
84863274665
-
Greatly improved catalytic activity and direct electron transfer rate of cytochrome C due to the confinement effect in a layered self-assembly structure
-
Hua B.Y., et al. Greatly improved catalytic activity and direct electron transfer rate of cytochrome C due to the confinement effect in a layered self-assembly structure. Chem. Commun. 2012, 48:2316-2318.
-
(2012)
Chem. Commun.
, vol.48
, pp. 2316-2318
-
-
Hua, B.Y.1
-
49
-
-
84863338215
-
Comparative study of single-, few-, and multilayered graphene toward enzyme conjugation and electrochemical response
-
Alwarappan S., et al. Comparative study of single-, few-, and multilayered graphene toward enzyme conjugation and electrochemical response. J. Phys. Chem. C 2012, 116:6556-6559.
-
(2012)
J. Phys. Chem. C
, vol.116
, pp. 6556-6559
-
-
Alwarappan, S.1
-
50
-
-
77952068054
-
Horseradish peroxidase immobilized on graphene oxide: physical properties and applications in phenolic compound removal
-
Zhang F., et al. Horseradish peroxidase immobilized on graphene oxide: physical properties and applications in phenolic compound removal. J. Phys. Chem. C 2010, 114:8469-8473.
-
(2010)
J. Phys. Chem. C
, vol.114
, pp. 8469-8473
-
-
Zhang, F.1
-
51
-
-
84867200823
-
Immobilization of laccase on carbon nanomaterials
-
Park J.H., et al. Immobilization of laccase on carbon nanomaterials. Korean J. Chem. Eng. 2012, 29:1409-1412.
-
(2012)
Korean J. Chem. Eng.
, vol.29
, pp. 1409-1412
-
-
Park, J.H.1
-
52
-
-
77952979384
-
Functionalized multi-wall carbon nanotubes for lipase immobilization
-
Pavlidis I.V., et al. Functionalized multi-wall carbon nanotubes for lipase immobilization. Adv. Eng. Mater. 2010, 12:B179-B183.
-
(2010)
Adv. Eng. Mater.
, vol.12
-
-
Pavlidis, I.V.1
-
53
-
-
84865783682
-
Calcium-based functionalization of carbon nanostructures for peptide immobilization in aqueous media
-
Cazorla C., et al. Calcium-based functionalization of carbon nanostructures for peptide immobilization in aqueous media. J. Mater. Chem. 2012, 22:19684-19693.
-
(2012)
J. Mater. Chem.
, vol.22
, pp. 19684-19693
-
-
Cazorla, C.1
-
54
-
-
84856233415
-
Glucose oxidase and graphene bionanocomposite bridged by ionic liquid unit for glucose biosensing application
-
Jiang Y., et al. Glucose oxidase and graphene bionanocomposite bridged by ionic liquid unit for glucose biosensing application. Sensors Actuators B 2012, 161:728-733.
-
(2012)
Sensors Actuators B
, vol.161
, pp. 728-733
-
-
Jiang, Y.1
-
55
-
-
55249126836
-
Covalent immobilization of proteins on carbon nanotubes using the cross-linker 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide - a critical assessment
-
Gao Y., Kyratzis I. Covalent immobilization of proteins on carbon nanotubes using the cross-linker 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide - a critical assessment. Bioconjug. Chem. 2008, 19:1945-1950.
-
(2008)
Bioconjug. Chem.
, vol.19
, pp. 1945-1950
-
-
Gao, Y.1
Kyratzis, I.2
-
56
-
-
68949201472
-
Comparison of protein immobilisation methods onto oxidised and native carbon nanofibres for optimum biosensor development
-
Stavyiannoudaki V., et al. Comparison of protein immobilisation methods onto oxidised and native carbon nanofibres for optimum biosensor development. Anal. Bioanal. Chem. 2009, 395:429-435.
-
(2009)
Anal. Bioanal. Chem.
, vol.395
, pp. 429-435
-
-
Stavyiannoudaki, V.1
-
57
-
-
77951686517
-
Biocompatible graphene oxide-based glucose biosensors
-
Liu Y., et al. Biocompatible graphene oxide-based glucose biosensors. Langmuir 2010, 26:6158-6160.
-
(2010)
Langmuir
, vol.26
, pp. 6158-6160
-
-
Liu, Y.1
-
58
-
-
77956650569
-
Covalent attaching protein to graphene oxide via diimide-activated amidation
-
Shen J., et al. Covalent attaching protein to graphene oxide via diimide-activated amidation. Colloids Surf. B: Biointerfaces 2010, 81:434-438.
-
(2010)
Colloids Surf. B: Biointerfaces
, vol.81
, pp. 434-438
-
-
Shen, J.1
-
59
-
-
84862203433
-
Immobilization of trypsin on graphene oxide for microwave-assisted on-plate proteolysis combined with MALDI-MS analysis
-
Xu G., et al. Immobilization of trypsin on graphene oxide for microwave-assisted on-plate proteolysis combined with MALDI-MS analysis. Analyst 2012, 137:2757-2761.
-
(2012)
Analyst
, vol.137
, pp. 2757-2761
-
-
Xu, G.1
-
60
-
-
84862796794
-
Studies on the properties of graphene oxide-alkaline protease bio-composites
-
Su R., et al. Studies on the properties of graphene oxide-alkaline protease bio-composites. Bioresour. Technol. 2012, 115:136-140.
-
(2012)
Bioresour. Technol.
, vol.115
, pp. 136-140
-
-
Su, R.1
-
61
-
-
84866251800
-
An amperometric bienzymatic cholesterol biosensor based on functionalized graphene modified electrode and its electrocatalytic activity towards total cholesterol determination
-
Manjunatha R., et al. An amperometric bienzymatic cholesterol biosensor based on functionalized graphene modified electrode and its electrocatalytic activity towards total cholesterol determination. Talanta 2012, 99:302-309.
-
(2012)
Talanta
, vol.99
, pp. 302-309
-
-
Manjunatha, R.1
-
62
-
-
84870783424
-
4-hemoglobin composite in an electrochemical reactor
-
4-hemoglobin composite in an electrochemical reactor. Proc. Biochem. 2012, 47:2480-2486.
-
(2012)
Proc. Biochem.
, vol.47
, pp. 2480-2486
-
-
Zhu, J.1
-
63
-
-
0034827512
-
Noncovalent sidewall functionalization of single-walled carbon nanotubes for protein immobilization
-
Chen R.J., et al. Noncovalent sidewall functionalization of single-walled carbon nanotubes for protein immobilization. J. Am. Chem. Soc. 2001, 123:3838-3839.
-
(2001)
J. Am. Chem. Soc.
, vol.123
, pp. 3838-3839
-
-
Chen, R.J.1
-
64
-
-
77955369939
-
Nanoelectronic biosensors based on CVD grown graphene
-
Huang Y., et al. Nanoelectronic biosensors based on CVD grown graphene. Nanoscale 2010, 2:1485-1488.
-
(2010)
Nanoscale
, vol.2
, pp. 1485-1488
-
-
Huang, Y.1
-
65
-
-
78650401871
-
Gold nanoparticles/L-cysteine/graphene composite based immobilization strategy for an electrochemical immunosensor
-
Wang G., et al. Gold nanoparticles/L-cysteine/graphene composite based immobilization strategy for an electrochemical immunosensor. Anal. Methods 2010, 2:1692-1697.
-
(2010)
Anal. Methods
, vol.2
, pp. 1692-1697
-
-
Wang, G.1
-
66
-
-
84871589599
-
Biorecognition on graphene: physical, covalent, and affinity immobilization methods exhibiting dramatic differences
-
Loo A.H., et al. Biorecognition on graphene: physical, covalent, and affinity immobilization methods exhibiting dramatic differences. Chem. Asian J. 2013, 8:198-203.
-
(2013)
Chem. Asian J.
, vol.8
, pp. 198-203
-
-
Loo, A.H.1
-
67
-
-
84894257066
-
Effect of graphene oxide on affinity-immobilization of purple membranes on solid supports
-
Chen H-M., et al. Effect of graphene oxide on affinity-immobilization of purple membranes on solid supports. Colloids Surf. B: Biointerfaces 2014, 116:482-488.
-
(2014)
Colloids Surf. B: Biointerfaces
, vol.116
, pp. 482-488
-
-
Chen, H.-M.1
-
68
-
-
0037202184
-
Bioelectrochemical single-walled carbon nanotubes
-
Azamian B.R., et al. Bioelectrochemical single-walled carbon nanotubes. J. Am. Chem. Soc. 2002, 124:12664-12665.
-
(2002)
J. Am. Chem. Soc.
, vol.124
, pp. 12664-12665
-
-
Azamian, B.R.1
-
69
-
-
84863995889
-
Immobilization of β-galactosidase onto functionalized graphene nano-sheets using response surface methodology and its analytical applications
-
Kishore D., et al. Immobilization of β-galactosidase onto functionalized graphene nano-sheets using response surface methodology and its analytical applications. PLoS ONE 2012, 7. 10.1371/journal.pone.0040708.
-
(2012)
PLoS ONE
, vol.7
-
-
Kishore, D.1
-
70
-
-
79954442582
-
A graphene oxide/hemoglobin composite hydrogel for enzymatic catalysis in organic solvents
-
Huang C., et al. A graphene oxide/hemoglobin composite hydrogel for enzymatic catalysis in organic solvents. Chem. Commun. 2011, 47:4962-4964.
-
(2011)
Chem. Commun.
, vol.47
, pp. 4962-4964
-
-
Huang, C.1
-
71
-
-
77149121079
-
Nanobiocatalysis for protein digestion in proteomic analysis
-
Kim J., et al. Nanobiocatalysis for protein digestion in proteomic analysis. Proteomics 2010, 10:687-699.
-
(2010)
Proteomics
, vol.10
, pp. 687-699
-
-
Kim, J.1
-
72
-
-
84874068386
-
Realization of on-tissue protein identification by highly efficient in situ digestion with graphene-immobilized trypsin for MALDI imaging analysis
-
Jiao J., et al. Realization of on-tissue protein identification by highly efficient in situ digestion with graphene-immobilized trypsin for MALDI imaging analysis. Analyst 2013, 138:1645-1648.
-
(2013)
Analyst
, vol.138
, pp. 1645-1648
-
-
Jiao, J.1
-
73
-
-
84883801413
-
Immobilization of trypsin via graphene oxide-silica composite for efficient microchip proteolysis
-
Bao H., et al. Immobilization of trypsin via graphene oxide-silica composite for efficient microchip proteolysis. J. Chromatogr. A 2013, 1310:74-81.
-
(2013)
J. Chromatogr. A
, vol.1310
, pp. 74-81
-
-
Bao, H.1
-
74
-
-
34247205388
-
2 biofuel cell: preparation, characterization and performance in serum
-
2 biofuel cell: preparation, characterization and performance in serum. Electrochem. Commun. 2007, 9:989-996.
-
(2007)
Electrochem. Commun.
, vol.9
, pp. 989-996
-
-
Gao, F.1
-
75
-
-
84880298910
-
Engineering hybrid nanotube wires for high-power biofuel cells
-
Gao F., et al. Engineering hybrid nanotube wires for high-power biofuel cells. Nat. Commun. 2010, 1:1-7.
-
(2010)
Nat. Commun.
, vol.1
, pp. 1-7
-
-
Gao, F.1
-
76
-
-
35348915305
-
A biofuel cell harvesting energy from glucose-air and fruit juice-air
-
Liu Y., Dong S. A biofuel cell harvesting energy from glucose-air and fruit juice-air. Biosens. Bioelectron. 2007, 23:593-597.
-
(2007)
Biosens. Bioelectron.
, vol.23
, pp. 593-597
-
-
Liu, Y.1
Dong, S.2
-
77
-
-
77952302467
-
Membraneless enzymatic biofuel cells based on graphene nanosheets
-
Liu C., et al. Membraneless enzymatic biofuel cells based on graphene nanosheets. Biosens. Bioelectron. 2010, 25:1829-1833.
-
(2010)
Biosens. Bioelectron.
, vol.25
, pp. 1829-1833
-
-
Liu, C.1
-
78
-
-
80052242034
-
Graphene as a spacer to layer-by-layer assemble electrochemically functionalized nanostructures for molecular bioelectronic devices
-
Wang X., et al. Graphene as a spacer to layer-by-layer assemble electrochemically functionalized nanostructures for molecular bioelectronic devices. Langmuir 2011, 27:11180-11186.
-
(2011)
Langmuir
, vol.27
, pp. 11180-11186
-
-
Wang, X.1
-
79
-
-
84871171941
-
2 biofuel cell based on graphene and multiwalled carbon nanotube composite modified electrode
-
2 biofuel cell based on graphene and multiwalled carbon nanotube composite modified electrode. Int. J. Electrochem. Sci. 2012, 7:8064-8075.
-
(2012)
Int. J. Electrochem. Sci.
, vol.7
, pp. 8064-8075
-
-
Devadas, B.1
-
80
-
-
84878358850
-
4 magnetic nanoparticles/reduced graphene oxide nanosheets as a novel electrochemical and bioeletrochemical sensing platform
-
4 magnetic nanoparticles/reduced graphene oxide nanosheets as a novel electrochemical and bioeletrochemical sensing platform. Biosens. Bioelectron. 2013, 49:1-8.
-
(2013)
Biosens. Bioelectron.
, vol.49
, pp. 1-8
-
-
Teymourian, H.1
-
81
-
-
84865750676
-
In situ fuel processing in a microbial fuel cell
-
Bahartan K., et al. In situ fuel processing in a microbial fuel cell. ChemSusChem 2012, 5:1820-1825.
-
(2012)
ChemSusChem
, vol.5
, pp. 1820-1825
-
-
Bahartan, K.1
-
82
-
-
84869987173
-
Encapsulation of yeast displaying glucose oxidase on their surface in graphene oxide hydrogel scaffolding and its bioactivation
-
Bahartan K., et al. Encapsulation of yeast displaying glucose oxidase on their surface in graphene oxide hydrogel scaffolding and its bioactivation. Chem. Commun. 2012, 48:11957-11959.
-
(2012)
Chem. Commun.
, vol.48
, pp. 11957-11959
-
-
Bahartan, K.1
-
83
-
-
84884281167
-
Tuning the dispersibility of carbon nanostructures from organophilic to hydrophilic: towards the preparation of new multipurpose carbon-based hybrids
-
Georgakilas V., et al. Tuning the dispersibility of carbon nanostructures from organophilic to hydrophilic: towards the preparation of new multipurpose carbon-based hybrids. Chem. Eur. J. 2013, 19:12884-12891.
-
(2013)
Chem. Eur. J.
, vol.19
, pp. 12884-12891
-
-
Georgakilas, V.1
-
84
-
-
0000137774
-
Structure of graphite oxide revisited
-
Lerf A., et al. Structure of graphite oxide revisited. J. Phys. Chem. B 1998, 102:4477-4482.
-
(1998)
J. Phys. Chem. B
, vol.102
, pp. 4477-4482
-
-
Lerf, A.1
-
85
-
-
0041841504
-
Graphite oxide: chemical reduction to graphite and surface modification with primary aliphatic amines and amino acids
-
Bourlinos A.B., et al. Graphite oxide: chemical reduction to graphite and surface modification with primary aliphatic amines and amino acids. Langmuir 2003, 19:6050-6055.
-
(2003)
Langmuir
, vol.19
, pp. 6050-6055
-
-
Bourlinos, A.B.1
-
86
-
-
77949880674
-
The chemistry of graphene oxide
-
Dreyer D.R., et al. The chemistry of graphene oxide. Chem. Soc. Rev. 2010, 39:228-240.
-
(2010)
Chem. Soc. Rev.
, vol.39
, pp. 228-240
-
-
Dreyer, D.R.1
-
87
-
-
84885167821
-
Revealing the ultrafast process behind the photoreduction of graphene oxide
-
Gengler R.Y.N., et al. Revealing the ultrafast process behind the photoreduction of graphene oxide. Nat. Commun. 2013, 4. 10.1038/ncomms3560.
-
(2013)
Nat. Commun.
, vol.4
-
-
Gengler, R.Y.N.1
-
88
-
-
77953981837
-
Structural evolution during the reduction of chemically derived graphene oxide
-
Bagri A., et al. Structural evolution during the reduction of chemically derived graphene oxide. Nat. Chem. 2010, 2:581-587.
-
(2010)
Nat. Chem.
, vol.2
, pp. 581-587
-
-
Bagri, A.1
-
89
-
-
64649106692
-
Direct electrochemistry of glucose oxidase and biosensing for glucose based on graphene
-
Shan C., et al. Direct electrochemistry of glucose oxidase and biosensing for glucose based on graphene. Anal. Chem. 2009, 81:2378-2382.
-
(2009)
Anal. Chem.
, vol.81
, pp. 2378-2382
-
-
Shan, C.1
-
90
-
-
84862512776
-
Electrochemistry of horseradish peroxidase entrapped in graphene and dsDNA composite modified carbon ionic liquid electrode
-
Sun W., et al. Electrochemistry of horseradish peroxidase entrapped in graphene and dsDNA composite modified carbon ionic liquid electrode. Electrochim. Acta 2012, 75:381-386.
-
(2012)
Electrochim. Acta
, vol.75
, pp. 381-386
-
-
Sun, W.1
-
91
-
-
84863485004
-
Glass carbon electrode modified with horseradish peroxidase immobilized on partially reduced graphene oxide for detecting phenolic compounds
-
Zhang Y., et al. Glass carbon electrode modified with horseradish peroxidase immobilized on partially reduced graphene oxide for detecting phenolic compounds. J. Electroanal. Chem. 2012, 681:49-55.
-
(2012)
J. Electroanal. Chem.
, vol.681
, pp. 49-55
-
-
Zhang, Y.1
-
92
-
-
84881644849
-
Preparation of graphene nanoplatelet-titanate nanotube composite and its advantages over the two single components as biosensor immobilization materials
-
Liu X., et al. Preparation of graphene nanoplatelet-titanate nanotube composite and its advantages over the two single components as biosensor immobilization materials. Biosens. Bioelectron. 2014, 51:76-81.
-
(2014)
Biosens. Bioelectron.
, vol.51
, pp. 76-81
-
-
Liu, X.1
-
93
-
-
84868611625
-
Nanocomposite of polymerized ionic liquid and graphene used as modifier for direct electrochemistry of cytochrome c and nitric oxide biosensing
-
Chen H., Zhao G. Nanocomposite of polymerized ionic liquid and graphene used as modifier for direct electrochemistry of cytochrome c and nitric oxide biosensing. J. Solid State Electrochem. 2012, 16:3289-3297.
-
(2012)
J. Solid State Electrochem.
, vol.16
, pp. 3289-3297
-
-
Chen, H.1
Zhao, G.2
-
94
-
-
72149098393
-
Graphene-based modified electrode for the direct electron transfer of cytochrome c and biosensing
-
Wu J.F., et al. Graphene-based modified electrode for the direct electron transfer of cytochrome c and biosensing. Electrochem. Commun. 2010, 12:175-177.
-
(2010)
Electrochem. Commun.
, vol.12
, pp. 175-177
-
-
Wu, J.F.1
-
95
-
-
84887149641
-
Graphene materials-based energy acceptor systems and sensors
-
Li Z., et al. Graphene materials-based energy acceptor systems and sensors. J. Photochem. Photobiol. C: Photochem. Rev. 2013, 18:1-17.
-
(2013)
J. Photochem. Photobiol. C: Photochem. Rev.
, vol.18
, pp. 1-17
-
-
Li, Z.1
-
96
-
-
84859771190
-
Recent advances on synthesis and application of graphene as novel sensing materials in analytical chemistry
-
Li Z.J., Xia Q.F. Recent advances on synthesis and application of graphene as novel sensing materials in analytical chemistry. Rev. Anal. Chem. 2012, 31:57-81.
-
(2012)
Rev. Anal. Chem.
, vol.31
, pp. 57-81
-
-
Li, Z.J.1
Xia, Q.F.2
|