메뉴 건너뛰기




Volumn 32, Issue 6, 2014, Pages 312-320

Graphene-based nanobiocatalytic systems: Recent advances and future prospects

Author keywords

Biofuel cells; Enzyme immobilization; Enzyme nanomaterial interactions; Graphene based nanomaterials; Nanobiocatalysis

Indexed keywords

BIOLOGICAL FUEL CELLS; ENZYME IMMOBILIZATION; GRAPHENE; MECHANICAL PROPERTIES;

EID: 84901002787     PISSN: 01677799     EISSN: 18793096     Source Type: Journal    
DOI: 10.1016/j.tibtech.2014.04.004     Document Type: Review
Times cited : (150)

References (96)
  • 1
    • 53949106970 scopus 로고    scopus 로고
    • Nanobiocatalysis and its potential applications
    • Kim J., et al. Nanobiocatalysis and its potential applications. Trends Biotechnol. 2008, 26:639-646.
    • (2008) Trends Biotechnol. , vol.26 , pp. 639-646
    • Kim, J.1
  • 2
    • 84872334138 scopus 로고    scopus 로고
    • Nanobiotechnology as a novel paradigm for enzyme immobilisation and stabilisation with potential applications in biodiesel production
    • Verma M.L., et al. Nanobiotechnology as a novel paradigm for enzyme immobilisation and stabilisation with potential applications in biodiesel production. Appl. Microbiol. Biotechnol. 2013, 97:23-39.
    • (2013) Appl. Microbiol. Biotechnol. , vol.97 , pp. 23-39
    • Verma, M.L.1
  • 3
    • 84871851202 scopus 로고    scopus 로고
    • Nanobiocatalysis in organic media: opportunities for enzymes in nanostructures
    • Ge J., et al. Nanobiocatalysis in organic media: opportunities for enzymes in nanostructures. Top. Catal. 2012, 55:1070-1080.
    • (2012) Top. Catal. , vol.55 , pp. 1070-1080
    • Ge, J.1
  • 4
    • 84857501798 scopus 로고    scopus 로고
    • Potential applications of enzymes immobilized on/in nano materials: a review
    • Ansari S.A., Husain Q. Potential applications of enzymes immobilized on/in nano materials: a review. Biotechnol. Adv. 2012, 30:512-523.
    • (2012) Biotechnol. Adv. , vol.30 , pp. 512-523
    • Ansari, S.A.1    Husain, Q.2
  • 6
    • 33947602594 scopus 로고    scopus 로고
    • Improvement of enzyme activity, stability and selectivity via immobilization techniques
    • Mateo C., et al. Improvement of enzyme activity, stability and selectivity via immobilization techniques. Enzyme Microb. Technol. 2007, 40:1451-1463.
    • (2007) Enzyme Microb. Technol. , vol.40 , pp. 1451-1463
    • Mateo, C.1
  • 7
    • 78649806814 scopus 로고    scopus 로고
    • Engineering the nanoparticle-protein interface: applications and possibilities
    • Rana S., et al. Engineering the nanoparticle-protein interface: applications and possibilities. Curr. Opin. Chem. Biol. 2010, 14:828-834.
    • (2010) Curr. Opin. Chem. Biol. , vol.14 , pp. 828-834
    • Rana, S.1
  • 8
    • 0041528514 scopus 로고    scopus 로고
    • Immobilizing enzymes: how to create more suitable biocatalysts
    • Bornscheuer U.T. Immobilizing enzymes: how to create more suitable biocatalysts. Angew. Chem. Int. Ed. Engl. 2003, 42:3336-3337.
    • (2003) Angew. Chem. Int. Ed. Engl. , vol.42 , pp. 3336-3337
    • Bornscheuer, U.T.1
  • 10
    • 84857501859 scopus 로고    scopus 로고
    • Immobilization strategies to develop enzymatic biosensors
    • Sassolas A., et al. Immobilization strategies to develop enzymatic biosensors. Biotechnol. Adv. 2012, 30:489-511.
    • (2012) Biotechnol. Adv. , vol.30 , pp. 489-511
    • Sassolas, A.1
  • 11
    • 79952197637 scopus 로고    scopus 로고
    • Enzyme nanoparticle fabrication: magnetic nanoparticle synthesis and enzyme immobilization
    • Johnson P.A., et al. Enzyme nanoparticle fabrication: magnetic nanoparticle synthesis and enzyme immobilization. Methods Mol. Biol. 2011, 679:183-191.
    • (2011) Methods Mol. Biol. , vol.679 , pp. 183-191
    • Johnson, P.A.1
  • 12
    • 79551634368 scopus 로고    scopus 로고
    • Two-dimensional nanosheets produced by liquid exfoliation of layered materials
    • Coleman J.N., et al. Two-dimensional nanosheets produced by liquid exfoliation of layered materials. Science 2011, 331:568-571.
    • (2011) Science , vol.331 , pp. 568-571
    • Coleman, J.N.1
  • 13
    • 84879268263 scopus 로고    scopus 로고
    • Liquid exfoliation of layered materials
    • Nicolosi V., et al. Liquid exfoliation of layered materials. Science 2013, 340. 10.1126/science.1226419.
    • (2013) Science , vol.340
    • Nicolosi, V.1
  • 14
    • 84876471695 scopus 로고    scopus 로고
    • Prospects and challenges of graphene in biomedical applications
    • Bitounis D., et al. Prospects and challenges of graphene in biomedical applications. Adv. Mater. 2013, 25:2258-2268.
    • (2013) Adv. Mater. , vol.25 , pp. 2258-2268
    • Bitounis, D.1
  • 15
    • 84870004859 scopus 로고    scopus 로고
    • Graphene-based materials for biosensing and bioimaging
    • Du D., et al. Graphene-based materials for biosensing and bioimaging. MRS Bull. 2012, 37:1290-1296.
    • (2012) MRS Bull. , vol.37 , pp. 1290-1296
    • Du, D.1
  • 16
    • 84887653585 scopus 로고    scopus 로고
    • Graphene-based nanomaterials for drug delivery and tissue engineering
    • Goenka S., et al. Graphene-based nanomaterials for drug delivery and tissue engineering. J. Control. Release 2014, 173:75-88.
    • (2014) J. Control. Release , vol.173 , pp. 75-88
    • Goenka, S.1
  • 17
    • 84885113553 scopus 로고    scopus 로고
    • Graphene-based nanomaterials for nanobiotechnology and biomedical applications
    • Krishna K.V., et al. Graphene-based nanomaterials for nanobiotechnology and biomedical applications. Nanomedicine 2013, 8:1669-1688.
    • (2013) Nanomedicine , vol.8 , pp. 1669-1688
    • Krishna, K.V.1
  • 19
    • 79954657367 scopus 로고    scopus 로고
    • Graphene and graphene oxide: biofunctionalization and applications in biotechnology
    • Wang Y., et al. Graphene and graphene oxide: biofunctionalization and applications in biotechnology. Trends Biotechnol. 2011, 29:205-212.
    • (2011) Trends Biotechnol. , vol.29 , pp. 205-212
    • Wang, Y.1
  • 20
    • 84874152061 scopus 로고    scopus 로고
    • Immobilization of cellulase on magnetoresponsive graphene nano-supports
    • Gokhale A.A., et al. Immobilization of cellulase on magnetoresponsive graphene nano-supports. J. Mol. Catal. B: Enzym. 2013, 90:76-86.
    • (2013) J. Mol. Catal. B: Enzym. , vol.90 , pp. 76-86
    • Gokhale, A.A.1
  • 21
    • 84862852658 scopus 로고    scopus 로고
    • Functionalized graphene oxide in enzyme engineering: a selective modulator for enzyme activity and thermostability
    • Jin L., et al. Functionalized graphene oxide in enzyme engineering: a selective modulator for enzyme activity and thermostability. ACS Nano 2012, 6:4864-4875.
    • (2012) ACS Nano , vol.6 , pp. 4864-4875
    • Jin, L.1
  • 22
    • 84858340798 scopus 로고    scopus 로고
    • Development of effective nanobiocatalytic systems through the immobilization of hydrolases on functionalized carbon-based nanomaterials
    • Pavlidis I.V., et al. Development of effective nanobiocatalytic systems through the immobilization of hydrolases on functionalized carbon-based nanomaterials. Bioresour. Technol. 2012, 115:164-171.
    • (2012) Bioresour. Technol. , vol.115 , pp. 164-171
    • Pavlidis, I.V.1
  • 23
    • 84872717597 scopus 로고    scopus 로고
    • Functionalization of graphene for efficient energy conversion and storage
    • Dai L. Functionalization of graphene for efficient energy conversion and storage. Acc. Chem. Res. 2013, 46:31-42.
    • (2013) Acc. Chem. Res. , vol.46 , pp. 31-42
    • Dai, L.1
  • 24
    • 77949392996 scopus 로고    scopus 로고
    • The chemistry of graphene
    • Loh K.P., et al. The chemistry of graphene. J. Mater. Chem. 2010, 20:2277-2289.
    • (2010) J. Mater. Chem. , vol.20 , pp. 2277-2289
    • Loh, K.P.1
  • 25
    • 53849085330 scopus 로고    scopus 로고
    • Nano-graphene oxide for cellular imaging and drug delivery
    • Sun X., et al. Nano-graphene oxide for cellular imaging and drug delivery. Nano Res. 2008, 1:203-212.
    • (2008) Nano Res. , vol.1 , pp. 203-212
    • Sun, X.1
  • 26
    • 79960638579 scopus 로고    scopus 로고
    • Graphene oxide-peptide conjugate as an intracellular protease sensor for caspase-3 activation imaging in live cells
    • Wang H., et al. Graphene oxide-peptide conjugate as an intracellular protease sensor for caspase-3 activation imaging in live cells. Angew. Chem. Int. Ed. Engl. 2011, 50:7065-7069.
    • (2011) Angew. Chem. Int. Ed. Engl. , vol.50 , pp. 7065-7069
    • Wang, H.1
  • 27
    • 84872354545 scopus 로고    scopus 로고
    • A graphene oxide-photosensitizer complex as an enzyme-activatable theranostic agent
    • Cho Y., et al. A graphene oxide-photosensitizer complex as an enzyme-activatable theranostic agent. Chem. Commun. (Camb.) 2013, 49:1202-1204.
    • (2013) Chem. Commun. (Camb.) , vol.49 , pp. 1202-1204
    • Cho, Y.1
  • 28
    • 79960452977 scopus 로고    scopus 로고
    • Recent advances in graphene-based biosensors
    • Kuila T., et al. Recent advances in graphene-based biosensors. Biosens. Bioelectron. 2011, 26:4637-4648.
    • (2011) Biosens. Bioelectron. , vol.26 , pp. 4637-4648
    • Kuila, T.1
  • 29
    • 84877336107 scopus 로고    scopus 로고
    • Immobilization techniques in the fabrication of nanomaterial-based electrochemical biosensors: a review
    • Putzbach W., Ronkainen N.J. Immobilization techniques in the fabrication of nanomaterial-based electrochemical biosensors: a review. Sensors 2013, 13:4811-4840.
    • (2013) Sensors , vol.13 , pp. 4811-4840
    • Putzbach, W.1    Ronkainen, N.J.2
  • 30
    • 84883876329 scopus 로고    scopus 로고
    • Nanomaterials for bio-functionalized electrodes: recent trends
    • Walcarius A., et al. Nanomaterials for bio-functionalized electrodes: recent trends. J. Mater. Chem. B 2013, 1:4878-4908.
    • (2013) J. Mater. Chem. B , vol.1 , pp. 4878-4908
    • Walcarius, A.1
  • 31
    • 81855194721 scopus 로고    scopus 로고
    • Immobilization of trypsin in the layer-by-layer coating of graphene oxide and chitosan on in-channel glass fiber for microfluidic proteolysis
    • Bao H., et al. Immobilization of trypsin in the layer-by-layer coating of graphene oxide and chitosan on in-channel glass fiber for microfluidic proteolysis. Analyst 2011, 136:5190-5196.
    • (2011) Analyst , vol.136 , pp. 5190-5196
    • Bao, H.1
  • 32
    • 84885379701 scopus 로고    scopus 로고
    • Construction of graphene oxide magnetic nanocomposites-based on-chip enzymatic microreactor for ultrasensitive pesticide detection
    • Liang R.P., et al. Construction of graphene oxide magnetic nanocomposites-based on-chip enzymatic microreactor for ultrasensitive pesticide detection. J. Chromatogr. A 2013, 1315:28-35.
    • (2013) J. Chromatogr. A , vol.1315 , pp. 28-35
    • Liang, R.P.1
  • 33
    • 34247191269 scopus 로고    scopus 로고
    • Nanobiotechnology: protein-nanomaterial interactions
    • Kane R.S., Stroock A.D. Nanobiotechnology: protein-nanomaterial interactions. Biotechnol. Prog. 2007, 23:316-319.
    • (2007) Biotechnol. Prog. , vol.23 , pp. 316-319
    • Kane, R.S.1    Stroock, A.D.2
  • 34
    • 84865020679 scopus 로고    scopus 로고
    • Hydrophilic immobilized trypsin reactor with magnetic graphene oxide as support for high efficient proteome digestion
    • Jiang B., et al. Hydrophilic immobilized trypsin reactor with magnetic graphene oxide as support for high efficient proteome digestion. J. Chromatogr. A 2012, 1254:8-13.
    • (2012) J. Chromatogr. A , vol.1254 , pp. 8-13
    • Jiang, B.1
  • 35
    • 84859200684 scopus 로고    scopus 로고
    • Regulation of catalytic behaviour of hydrolases through interactions with functionalized carbon-based nanomaterials
    • Pavlidis I.V., et al. Regulation of catalytic behaviour of hydrolases through interactions with functionalized carbon-based nanomaterials. J. Nanopart. Res. 2012, 14. 10.1007/s11051-012-0842-4.
    • (2012) J. Nanopart. Res. , vol.14
    • Pavlidis, I.V.1
  • 36
    • 84862274437 scopus 로고    scopus 로고
    • Insight into the effects of graphene oxide sheets on the conformation and activity of glucose oxidase: towards developing a nanomaterial-based protein conformation assay
    • Shao Q., et al. Insight into the effects of graphene oxide sheets on the conformation and activity of glucose oxidase: towards developing a nanomaterial-based protein conformation assay. Phys. Chem. Chem. Phys. 2012, 14:9076-9085.
    • (2012) Phys. Chem. Chem. Phys. , vol.14 , pp. 9076-9085
    • Shao, Q.1
  • 37
    • 84855447240 scopus 로고    scopus 로고
    • Assembly of graphene oxide-enzyme conjugates through hydrophobic interaction
    • Zhang Y., et al. Assembly of graphene oxide-enzyme conjugates through hydrophobic interaction. Small 2012, 8:154-159.
    • (2012) Small , vol.8 , pp. 154-159
    • Zhang, Y.1
  • 38
    • 75749134159 scopus 로고    scopus 로고
    • Graphene oxide-facilitated electron transfer of metalloproteins at electrode surfaces
    • Zuo X., et al. Graphene oxide-facilitated electron transfer of metalloproteins at electrode surfaces. Langmuir 2010, 26:1936-1939.
    • (2010) Langmuir , vol.26 , pp. 1936-1939
    • Zuo, X.1
  • 39
    • 84877684109 scopus 로고    scopus 로고
    • Graphene oxide-induced conformation changes of glucose oxidase studied by infrared spectroscopy
    • Shao Q., et al. Graphene oxide-induced conformation changes of glucose oxidase studied by infrared spectroscopy. Colloids Surf. B: Biointerfaces 2013, 109:115-120.
    • (2013) Colloids Surf. B: Biointerfaces , vol.109 , pp. 115-120
    • Shao, Q.1
  • 40
    • 77951678756 scopus 로고    scopus 로고
    • Graphene oxide as a matrix for enzyme immobilization
    • Zhang J., et al. Graphene oxide as a matrix for enzyme immobilization. Langmuir 2010, 26:6083-6085.
    • (2010) Langmuir , vol.26 , pp. 6083-6085
    • Zhang, J.1
  • 41
    • 84880078753 scopus 로고    scopus 로고
    • Enhancement of cytochrome c catalytic behaviour by affecting the heme environment using functionalized carbon-based nanomaterials
    • Patila M., et al. Enhancement of cytochrome c catalytic behaviour by affecting the heme environment using functionalized carbon-based nanomaterials. Proc. Biochem. 2013, 48:1010-1017.
    • (2013) Proc. Biochem. , vol.48 , pp. 1010-1017
    • Patila, M.1
  • 42
    • 84876278357 scopus 로고    scopus 로고
    • Surface topography effects in protein adsorption on nanostructured carbon allotropes
    • Raffaini G., Ganazzoli F. Surface topography effects in protein adsorption on nanostructured carbon allotropes. Langmuir 2013, 29:4883-4893.
    • (2013) Langmuir , vol.29 , pp. 4883-4893
    • Raffaini, G.1    Ganazzoli, F.2
  • 43
    • 84883382094 scopus 로고    scopus 로고
    • Contrasting modulation of enzyme activity exhibited by graphene oxide and reduced graphene
    • Yang X., et al. Contrasting modulation of enzyme activity exhibited by graphene oxide and reduced graphene. Chem. Commun. (Comb.) 2013, 49:8611-8613.
    • (2013) Chem. Commun. (Comb.) , vol.49 , pp. 8611-8613
    • Yang, X.1
  • 44
    • 0002990922 scopus 로고    scopus 로고
    • Functionalization of carbon nanotubes for biocompatibility and biomolecular recognition
    • Shim M., et al. Functionalization of carbon nanotubes for biocompatibility and biomolecular recognition. Nano Lett. 2002, 2:285-288.
    • (2002) Nano Lett. , vol.2 , pp. 285-288
    • Shim, M.1
  • 45
    • 84880262320 scopus 로고    scopus 로고
    • Effects of surface curvature and surface characteristics of carbon-based nanomaterials on the adsorption and activity of acetylcholinesterase
    • Mesarič T., et al. Effects of surface curvature and surface characteristics of carbon-based nanomaterials on the adsorption and activity of acetylcholinesterase. Carbon 2013, 62:222-232.
    • (2013) Carbon , vol.62 , pp. 222-232
    • Mesarič, T.1
  • 46
    • 84878534495 scopus 로고    scopus 로고
    • Effect of graphene oxide on conformation and activity of catalase
    • Wei X.L., Ge Z.Q. Effect of graphene oxide on conformation and activity of catalase. Carbon 2013, 60:401-409.
    • (2013) Carbon , vol.60 , pp. 401-409
    • Wei, X.L.1    Ge, Z.Q.2
  • 47
    • 84877771644 scopus 로고    scopus 로고
    • Enzyme immobilization on carboxyl-functionalized graphene oxide for catalysis in organic solvent
    • Li Q., et al. Enzyme immobilization on carboxyl-functionalized graphene oxide for catalysis in organic solvent. Ind. Eng. Chem. Res. 2013, 52:6343-6348.
    • (2013) Ind. Eng. Chem. Res. , vol.52 , pp. 6343-6348
    • Li, Q.1
  • 48
    • 84863274665 scopus 로고    scopus 로고
    • Greatly improved catalytic activity and direct electron transfer rate of cytochrome C due to the confinement effect in a layered self-assembly structure
    • Hua B.Y., et al. Greatly improved catalytic activity and direct electron transfer rate of cytochrome C due to the confinement effect in a layered self-assembly structure. Chem. Commun. 2012, 48:2316-2318.
    • (2012) Chem. Commun. , vol.48 , pp. 2316-2318
    • Hua, B.Y.1
  • 49
    • 84863338215 scopus 로고    scopus 로고
    • Comparative study of single-, few-, and multilayered graphene toward enzyme conjugation and electrochemical response
    • Alwarappan S., et al. Comparative study of single-, few-, and multilayered graphene toward enzyme conjugation and electrochemical response. J. Phys. Chem. C 2012, 116:6556-6559.
    • (2012) J. Phys. Chem. C , vol.116 , pp. 6556-6559
    • Alwarappan, S.1
  • 50
    • 77952068054 scopus 로고    scopus 로고
    • Horseradish peroxidase immobilized on graphene oxide: physical properties and applications in phenolic compound removal
    • Zhang F., et al. Horseradish peroxidase immobilized on graphene oxide: physical properties and applications in phenolic compound removal. J. Phys. Chem. C 2010, 114:8469-8473.
    • (2010) J. Phys. Chem. C , vol.114 , pp. 8469-8473
    • Zhang, F.1
  • 51
    • 84867200823 scopus 로고    scopus 로고
    • Immobilization of laccase on carbon nanomaterials
    • Park J.H., et al. Immobilization of laccase on carbon nanomaterials. Korean J. Chem. Eng. 2012, 29:1409-1412.
    • (2012) Korean J. Chem. Eng. , vol.29 , pp. 1409-1412
    • Park, J.H.1
  • 52
    • 77952979384 scopus 로고    scopus 로고
    • Functionalized multi-wall carbon nanotubes for lipase immobilization
    • Pavlidis I.V., et al. Functionalized multi-wall carbon nanotubes for lipase immobilization. Adv. Eng. Mater. 2010, 12:B179-B183.
    • (2010) Adv. Eng. Mater. , vol.12
    • Pavlidis, I.V.1
  • 53
    • 84865783682 scopus 로고    scopus 로고
    • Calcium-based functionalization of carbon nanostructures for peptide immobilization in aqueous media
    • Cazorla C., et al. Calcium-based functionalization of carbon nanostructures for peptide immobilization in aqueous media. J. Mater. Chem. 2012, 22:19684-19693.
    • (2012) J. Mater. Chem. , vol.22 , pp. 19684-19693
    • Cazorla, C.1
  • 54
    • 84856233415 scopus 로고    scopus 로고
    • Glucose oxidase and graphene bionanocomposite bridged by ionic liquid unit for glucose biosensing application
    • Jiang Y., et al. Glucose oxidase and graphene bionanocomposite bridged by ionic liquid unit for glucose biosensing application. Sensors Actuators B 2012, 161:728-733.
    • (2012) Sensors Actuators B , vol.161 , pp. 728-733
    • Jiang, Y.1
  • 55
    • 55249126836 scopus 로고    scopus 로고
    • Covalent immobilization of proteins on carbon nanotubes using the cross-linker 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide - a critical assessment
    • Gao Y., Kyratzis I. Covalent immobilization of proteins on carbon nanotubes using the cross-linker 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide - a critical assessment. Bioconjug. Chem. 2008, 19:1945-1950.
    • (2008) Bioconjug. Chem. , vol.19 , pp. 1945-1950
    • Gao, Y.1    Kyratzis, I.2
  • 56
    • 68949201472 scopus 로고    scopus 로고
    • Comparison of protein immobilisation methods onto oxidised and native carbon nanofibres for optimum biosensor development
    • Stavyiannoudaki V., et al. Comparison of protein immobilisation methods onto oxidised and native carbon nanofibres for optimum biosensor development. Anal. Bioanal. Chem. 2009, 395:429-435.
    • (2009) Anal. Bioanal. Chem. , vol.395 , pp. 429-435
    • Stavyiannoudaki, V.1
  • 57
    • 77951686517 scopus 로고    scopus 로고
    • Biocompatible graphene oxide-based glucose biosensors
    • Liu Y., et al. Biocompatible graphene oxide-based glucose biosensors. Langmuir 2010, 26:6158-6160.
    • (2010) Langmuir , vol.26 , pp. 6158-6160
    • Liu, Y.1
  • 58
    • 77956650569 scopus 로고    scopus 로고
    • Covalent attaching protein to graphene oxide via diimide-activated amidation
    • Shen J., et al. Covalent attaching protein to graphene oxide via diimide-activated amidation. Colloids Surf. B: Biointerfaces 2010, 81:434-438.
    • (2010) Colloids Surf. B: Biointerfaces , vol.81 , pp. 434-438
    • Shen, J.1
  • 59
    • 84862203433 scopus 로고    scopus 로고
    • Immobilization of trypsin on graphene oxide for microwave-assisted on-plate proteolysis combined with MALDI-MS analysis
    • Xu G., et al. Immobilization of trypsin on graphene oxide for microwave-assisted on-plate proteolysis combined with MALDI-MS analysis. Analyst 2012, 137:2757-2761.
    • (2012) Analyst , vol.137 , pp. 2757-2761
    • Xu, G.1
  • 60
    • 84862796794 scopus 로고    scopus 로고
    • Studies on the properties of graphene oxide-alkaline protease bio-composites
    • Su R., et al. Studies on the properties of graphene oxide-alkaline protease bio-composites. Bioresour. Technol. 2012, 115:136-140.
    • (2012) Bioresour. Technol. , vol.115 , pp. 136-140
    • Su, R.1
  • 61
    • 84866251800 scopus 로고    scopus 로고
    • An amperometric bienzymatic cholesterol biosensor based on functionalized graphene modified electrode and its electrocatalytic activity towards total cholesterol determination
    • Manjunatha R., et al. An amperometric bienzymatic cholesterol biosensor based on functionalized graphene modified electrode and its electrocatalytic activity towards total cholesterol determination. Talanta 2012, 99:302-309.
    • (2012) Talanta , vol.99 , pp. 302-309
    • Manjunatha, R.1
  • 62
    • 84870783424 scopus 로고    scopus 로고
    • 4-hemoglobin composite in an electrochemical reactor
    • 4-hemoglobin composite in an electrochemical reactor. Proc. Biochem. 2012, 47:2480-2486.
    • (2012) Proc. Biochem. , vol.47 , pp. 2480-2486
    • Zhu, J.1
  • 63
    • 0034827512 scopus 로고    scopus 로고
    • Noncovalent sidewall functionalization of single-walled carbon nanotubes for protein immobilization
    • Chen R.J., et al. Noncovalent sidewall functionalization of single-walled carbon nanotubes for protein immobilization. J. Am. Chem. Soc. 2001, 123:3838-3839.
    • (2001) J. Am. Chem. Soc. , vol.123 , pp. 3838-3839
    • Chen, R.J.1
  • 64
    • 77955369939 scopus 로고    scopus 로고
    • Nanoelectronic biosensors based on CVD grown graphene
    • Huang Y., et al. Nanoelectronic biosensors based on CVD grown graphene. Nanoscale 2010, 2:1485-1488.
    • (2010) Nanoscale , vol.2 , pp. 1485-1488
    • Huang, Y.1
  • 65
    • 78650401871 scopus 로고    scopus 로고
    • Gold nanoparticles/L-cysteine/graphene composite based immobilization strategy for an electrochemical immunosensor
    • Wang G., et al. Gold nanoparticles/L-cysteine/graphene composite based immobilization strategy for an electrochemical immunosensor. Anal. Methods 2010, 2:1692-1697.
    • (2010) Anal. Methods , vol.2 , pp. 1692-1697
    • Wang, G.1
  • 66
    • 84871589599 scopus 로고    scopus 로고
    • Biorecognition on graphene: physical, covalent, and affinity immobilization methods exhibiting dramatic differences
    • Loo A.H., et al. Biorecognition on graphene: physical, covalent, and affinity immobilization methods exhibiting dramatic differences. Chem. Asian J. 2013, 8:198-203.
    • (2013) Chem. Asian J. , vol.8 , pp. 198-203
    • Loo, A.H.1
  • 67
    • 84894257066 scopus 로고    scopus 로고
    • Effect of graphene oxide on affinity-immobilization of purple membranes on solid supports
    • Chen H-M., et al. Effect of graphene oxide on affinity-immobilization of purple membranes on solid supports. Colloids Surf. B: Biointerfaces 2014, 116:482-488.
    • (2014) Colloids Surf. B: Biointerfaces , vol.116 , pp. 482-488
    • Chen, H.-M.1
  • 68
    • 0037202184 scopus 로고    scopus 로고
    • Bioelectrochemical single-walled carbon nanotubes
    • Azamian B.R., et al. Bioelectrochemical single-walled carbon nanotubes. J. Am. Chem. Soc. 2002, 124:12664-12665.
    • (2002) J. Am. Chem. Soc. , vol.124 , pp. 12664-12665
    • Azamian, B.R.1
  • 69
    • 84863995889 scopus 로고    scopus 로고
    • Immobilization of β-galactosidase onto functionalized graphene nano-sheets using response surface methodology and its analytical applications
    • Kishore D., et al. Immobilization of β-galactosidase onto functionalized graphene nano-sheets using response surface methodology and its analytical applications. PLoS ONE 2012, 7. 10.1371/journal.pone.0040708.
    • (2012) PLoS ONE , vol.7
    • Kishore, D.1
  • 70
    • 79954442582 scopus 로고    scopus 로고
    • A graphene oxide/hemoglobin composite hydrogel for enzymatic catalysis in organic solvents
    • Huang C., et al. A graphene oxide/hemoglobin composite hydrogel for enzymatic catalysis in organic solvents. Chem. Commun. 2011, 47:4962-4964.
    • (2011) Chem. Commun. , vol.47 , pp. 4962-4964
    • Huang, C.1
  • 71
    • 77149121079 scopus 로고    scopus 로고
    • Nanobiocatalysis for protein digestion in proteomic analysis
    • Kim J., et al. Nanobiocatalysis for protein digestion in proteomic analysis. Proteomics 2010, 10:687-699.
    • (2010) Proteomics , vol.10 , pp. 687-699
    • Kim, J.1
  • 72
    • 84874068386 scopus 로고    scopus 로고
    • Realization of on-tissue protein identification by highly efficient in situ digestion with graphene-immobilized trypsin for MALDI imaging analysis
    • Jiao J., et al. Realization of on-tissue protein identification by highly efficient in situ digestion with graphene-immobilized trypsin for MALDI imaging analysis. Analyst 2013, 138:1645-1648.
    • (2013) Analyst , vol.138 , pp. 1645-1648
    • Jiao, J.1
  • 73
    • 84883801413 scopus 로고    scopus 로고
    • Immobilization of trypsin via graphene oxide-silica composite for efficient microchip proteolysis
    • Bao H., et al. Immobilization of trypsin via graphene oxide-silica composite for efficient microchip proteolysis. J. Chromatogr. A 2013, 1310:74-81.
    • (2013) J. Chromatogr. A , vol.1310 , pp. 74-81
    • Bao, H.1
  • 74
    • 34247205388 scopus 로고    scopus 로고
    • 2 biofuel cell: preparation, characterization and performance in serum
    • 2 biofuel cell: preparation, characterization and performance in serum. Electrochem. Commun. 2007, 9:989-996.
    • (2007) Electrochem. Commun. , vol.9 , pp. 989-996
    • Gao, F.1
  • 75
    • 84880298910 scopus 로고    scopus 로고
    • Engineering hybrid nanotube wires for high-power biofuel cells
    • Gao F., et al. Engineering hybrid nanotube wires for high-power biofuel cells. Nat. Commun. 2010, 1:1-7.
    • (2010) Nat. Commun. , vol.1 , pp. 1-7
    • Gao, F.1
  • 76
    • 35348915305 scopus 로고    scopus 로고
    • A biofuel cell harvesting energy from glucose-air and fruit juice-air
    • Liu Y., Dong S. A biofuel cell harvesting energy from glucose-air and fruit juice-air. Biosens. Bioelectron. 2007, 23:593-597.
    • (2007) Biosens. Bioelectron. , vol.23 , pp. 593-597
    • Liu, Y.1    Dong, S.2
  • 77
    • 77952302467 scopus 로고    scopus 로고
    • Membraneless enzymatic biofuel cells based on graphene nanosheets
    • Liu C., et al. Membraneless enzymatic biofuel cells based on graphene nanosheets. Biosens. Bioelectron. 2010, 25:1829-1833.
    • (2010) Biosens. Bioelectron. , vol.25 , pp. 1829-1833
    • Liu, C.1
  • 78
    • 80052242034 scopus 로고    scopus 로고
    • Graphene as a spacer to layer-by-layer assemble electrochemically functionalized nanostructures for molecular bioelectronic devices
    • Wang X., et al. Graphene as a spacer to layer-by-layer assemble electrochemically functionalized nanostructures for molecular bioelectronic devices. Langmuir 2011, 27:11180-11186.
    • (2011) Langmuir , vol.27 , pp. 11180-11186
    • Wang, X.1
  • 79
    • 84871171941 scopus 로고    scopus 로고
    • 2 biofuel cell based on graphene and multiwalled carbon nanotube composite modified electrode
    • 2 biofuel cell based on graphene and multiwalled carbon nanotube composite modified electrode. Int. J. Electrochem. Sci. 2012, 7:8064-8075.
    • (2012) Int. J. Electrochem. Sci. , vol.7 , pp. 8064-8075
    • Devadas, B.1
  • 80
    • 84878358850 scopus 로고    scopus 로고
    • 4 magnetic nanoparticles/reduced graphene oxide nanosheets as a novel electrochemical and bioeletrochemical sensing platform
    • 4 magnetic nanoparticles/reduced graphene oxide nanosheets as a novel electrochemical and bioeletrochemical sensing platform. Biosens. Bioelectron. 2013, 49:1-8.
    • (2013) Biosens. Bioelectron. , vol.49 , pp. 1-8
    • Teymourian, H.1
  • 81
    • 84865750676 scopus 로고    scopus 로고
    • In situ fuel processing in a microbial fuel cell
    • Bahartan K., et al. In situ fuel processing in a microbial fuel cell. ChemSusChem 2012, 5:1820-1825.
    • (2012) ChemSusChem , vol.5 , pp. 1820-1825
    • Bahartan, K.1
  • 82
    • 84869987173 scopus 로고    scopus 로고
    • Encapsulation of yeast displaying glucose oxidase on their surface in graphene oxide hydrogel scaffolding and its bioactivation
    • Bahartan K., et al. Encapsulation of yeast displaying glucose oxidase on their surface in graphene oxide hydrogel scaffolding and its bioactivation. Chem. Commun. 2012, 48:11957-11959.
    • (2012) Chem. Commun. , vol.48 , pp. 11957-11959
    • Bahartan, K.1
  • 83
    • 84884281167 scopus 로고    scopus 로고
    • Tuning the dispersibility of carbon nanostructures from organophilic to hydrophilic: towards the preparation of new multipurpose carbon-based hybrids
    • Georgakilas V., et al. Tuning the dispersibility of carbon nanostructures from organophilic to hydrophilic: towards the preparation of new multipurpose carbon-based hybrids. Chem. Eur. J. 2013, 19:12884-12891.
    • (2013) Chem. Eur. J. , vol.19 , pp. 12884-12891
    • Georgakilas, V.1
  • 84
    • 0000137774 scopus 로고    scopus 로고
    • Structure of graphite oxide revisited
    • Lerf A., et al. Structure of graphite oxide revisited. J. Phys. Chem. B 1998, 102:4477-4482.
    • (1998) J. Phys. Chem. B , vol.102 , pp. 4477-4482
    • Lerf, A.1
  • 85
    • 0041841504 scopus 로고    scopus 로고
    • Graphite oxide: chemical reduction to graphite and surface modification with primary aliphatic amines and amino acids
    • Bourlinos A.B., et al. Graphite oxide: chemical reduction to graphite and surface modification with primary aliphatic amines and amino acids. Langmuir 2003, 19:6050-6055.
    • (2003) Langmuir , vol.19 , pp. 6050-6055
    • Bourlinos, A.B.1
  • 86
    • 77949880674 scopus 로고    scopus 로고
    • The chemistry of graphene oxide
    • Dreyer D.R., et al. The chemistry of graphene oxide. Chem. Soc. Rev. 2010, 39:228-240.
    • (2010) Chem. Soc. Rev. , vol.39 , pp. 228-240
    • Dreyer, D.R.1
  • 87
    • 84885167821 scopus 로고    scopus 로고
    • Revealing the ultrafast process behind the photoreduction of graphene oxide
    • Gengler R.Y.N., et al. Revealing the ultrafast process behind the photoreduction of graphene oxide. Nat. Commun. 2013, 4. 10.1038/ncomms3560.
    • (2013) Nat. Commun. , vol.4
    • Gengler, R.Y.N.1
  • 88
    • 77953981837 scopus 로고    scopus 로고
    • Structural evolution during the reduction of chemically derived graphene oxide
    • Bagri A., et al. Structural evolution during the reduction of chemically derived graphene oxide. Nat. Chem. 2010, 2:581-587.
    • (2010) Nat. Chem. , vol.2 , pp. 581-587
    • Bagri, A.1
  • 89
    • 64649106692 scopus 로고    scopus 로고
    • Direct electrochemistry of glucose oxidase and biosensing for glucose based on graphene
    • Shan C., et al. Direct electrochemistry of glucose oxidase and biosensing for glucose based on graphene. Anal. Chem. 2009, 81:2378-2382.
    • (2009) Anal. Chem. , vol.81 , pp. 2378-2382
    • Shan, C.1
  • 90
    • 84862512776 scopus 로고    scopus 로고
    • Electrochemistry of horseradish peroxidase entrapped in graphene and dsDNA composite modified carbon ionic liquid electrode
    • Sun W., et al. Electrochemistry of horseradish peroxidase entrapped in graphene and dsDNA composite modified carbon ionic liquid electrode. Electrochim. Acta 2012, 75:381-386.
    • (2012) Electrochim. Acta , vol.75 , pp. 381-386
    • Sun, W.1
  • 91
    • 84863485004 scopus 로고    scopus 로고
    • Glass carbon electrode modified with horseradish peroxidase immobilized on partially reduced graphene oxide for detecting phenolic compounds
    • Zhang Y., et al. Glass carbon electrode modified with horseradish peroxidase immobilized on partially reduced graphene oxide for detecting phenolic compounds. J. Electroanal. Chem. 2012, 681:49-55.
    • (2012) J. Electroanal. Chem. , vol.681 , pp. 49-55
    • Zhang, Y.1
  • 92
    • 84881644849 scopus 로고    scopus 로고
    • Preparation of graphene nanoplatelet-titanate nanotube composite and its advantages over the two single components as biosensor immobilization materials
    • Liu X., et al. Preparation of graphene nanoplatelet-titanate nanotube composite and its advantages over the two single components as biosensor immobilization materials. Biosens. Bioelectron. 2014, 51:76-81.
    • (2014) Biosens. Bioelectron. , vol.51 , pp. 76-81
    • Liu, X.1
  • 93
    • 84868611625 scopus 로고    scopus 로고
    • Nanocomposite of polymerized ionic liquid and graphene used as modifier for direct electrochemistry of cytochrome c and nitric oxide biosensing
    • Chen H., Zhao G. Nanocomposite of polymerized ionic liquid and graphene used as modifier for direct electrochemistry of cytochrome c and nitric oxide biosensing. J. Solid State Electrochem. 2012, 16:3289-3297.
    • (2012) J. Solid State Electrochem. , vol.16 , pp. 3289-3297
    • Chen, H.1    Zhao, G.2
  • 94
    • 72149098393 scopus 로고    scopus 로고
    • Graphene-based modified electrode for the direct electron transfer of cytochrome c and biosensing
    • Wu J.F., et al. Graphene-based modified electrode for the direct electron transfer of cytochrome c and biosensing. Electrochem. Commun. 2010, 12:175-177.
    • (2010) Electrochem. Commun. , vol.12 , pp. 175-177
    • Wu, J.F.1
  • 95
    • 84887149641 scopus 로고    scopus 로고
    • Graphene materials-based energy acceptor systems and sensors
    • Li Z., et al. Graphene materials-based energy acceptor systems and sensors. J. Photochem. Photobiol. C: Photochem. Rev. 2013, 18:1-17.
    • (2013) J. Photochem. Photobiol. C: Photochem. Rev. , vol.18 , pp. 1-17
    • Li, Z.1
  • 96
    • 84859771190 scopus 로고    scopus 로고
    • Recent advances on synthesis and application of graphene as novel sensing materials in analytical chemistry
    • Li Z.J., Xia Q.F. Recent advances on synthesis and application of graphene as novel sensing materials in analytical chemistry. Rev. Anal. Chem. 2012, 31:57-81.
    • (2012) Rev. Anal. Chem. , vol.31 , pp. 57-81
    • Li, Z.J.1    Xia, Q.F.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.