메뉴 건너뛰기




Volumn 139, Issue , 2014, Pages 397-407

An effective framework for supervised dimension reduction

Author keywords

Local structure; Manifold learning; Scalability; Supervised dimension reduction; Topic models

Indexed keywords

ENCODING (SYMBOLS);

EID: 84900990295     PISSN: 09252312     EISSN: 18728286     Source Type: Journal    
DOI: 10.1016/j.neucom.2014.02.017     Document Type: Article
Times cited : (8)

References (24)
  • 3
    • 34249086815 scopus 로고    scopus 로고
    • Dimensionality reduction of multimodal labeled data by local Fisher discriminant analysis
    • Sugiyama M. Dimensionality reduction of multimodal labeled data by local Fisher discriminant analysis. J. Mach. Learn. Res. 2007, 8:1027-1061.
    • (2007) J. Mach. Learn. Res. , vol.8 , pp. 1027-1061
    • Sugiyama, M.1
  • 7
    • 58149195307 scopus 로고    scopus 로고
    • Discretization for naive-Bayes learning: managing discretization bias and variance
    • Yang Y., Webb G. Discretization for naive-Bayes learning: managing discretization bias and variance. Mach. Learn. 2009, 74(1):39-74.
    • (2009) Mach. Learn. , vol.74 , Issue.1 , pp. 39-74
    • Yang, Y.1    Webb, G.2
  • 9
    • 84857717020 scopus 로고    scopus 로고
    • Discriminative topic modeling based on manifold learning
    • Huh S., Fienberg S. Discriminative topic modeling based on manifold learning. ACM Trans. Knowl. Discov. Data 2012, 5(4):20.
    • (2012) ACM Trans. Knowl. Discov. Data , vol.5 , Issue.4 , pp. 20
    • Huh, S.1    Fienberg, S.2
  • 11
    • 0034818212 scopus 로고    scopus 로고
    • Unsupervised learning by probabilistic latent semantic analysis
    • ISSN 0885-6125, URL: 〈〉
    • Hofmann T. Unsupervised learning by probabilistic latent semantic analysis. Mach. Learn. 2001, 42:177-196. ISSN 0885-6125, URL: 〈http://dx.doi.org/10.1023/A:1007617005950〉.
    • (2001) Mach. Learn. , vol.42 , pp. 177-196
    • Hofmann, T.1
  • 13
    • 79957489009 scopus 로고    scopus 로고
    • DiscLDA: discriminative learning for dimensionality reduction and classification
    • MIT, (Curran Associates, Inc., )
    • S. Lacoste-Julien, F. Sha, M. Jordan, DiscLDA: discriminative learning for dimensionality reduction and classification, in: Advances in Neural Information Processing Systems (NIPS), vol. 21, MIT, 2008, pp. 897-904. (Curran Associates, Inc., ). http://papers.nips.cc/paper/3599-disclda-discriminative-learning-for-dimensionality-reduction-and-classification.pdf.
    • (2008) Advances in Neural Information Processing Systems (NIPS) , vol.21 , pp. 897-904
    • Lacoste-Julien, S.1    Sha, F.2    Jordan, M.3
  • 14
    • 84869186087 scopus 로고    scopus 로고
    • MedLDA: maximum margin supervised topic models
    • Zhu J., Ahmed A., Xing E.P. MedLDA: maximum margin supervised topic models. J. Mach. Learn. Res. 2012, 13:2237-2278.
    • (2012) J. Mach. Learn. Res. , vol.13 , pp. 2237-2278
    • Zhu, J.1    Ahmed, A.2    Xing, E.P.3
  • 15
    • 77956546378 scopus 로고    scopus 로고
    • Coresets, sparse greedy approximation, and the Frank-Wolfe algorithm
    • ISSN 1549-6325, URL: 〈〉 63:1-63:30
    • Clarkson K.L. Coresets, sparse greedy approximation, and the Frank-Wolfe algorithm. ACM Trans. Algorithms 2010, 6:63:1-63:30. ISSN 1549-6325, URL: 〈http://doi.acm.org/10.1145/1824777.1824783〉.
    • (2010) ACM Trans. Algorithms , vol.6
    • Clarkson, K.L.1
  • 16
    • 84897459309 scopus 로고    scopus 로고
    • Gibbs max-margin topic models with fast sampling algorithms
    • J. Zhu, N. Chen, H. Perkins, B. Zhang, Gibbs max-margin topic models with fast sampling algorithms, in: ICML, J. Mach. Learn. Res.: W&CP, vol. 28, 2013, pp. 124-132.
    • (2013) ICML, J. Mach. Learn. Res.: W&CP , vol.28 , pp. 124-132
    • Zhu, J.1    Chen, N.2    Perkins, H.3    Zhang, B.4
  • 17
    • 84878920314 scopus 로고    scopus 로고
    • Manifold regularization and semi-supervised learning: some theoretical analyses
    • URL: 〈〉
    • Niyogi P. Manifold regularization and semi-supervised learning: some theoretical analyses. J. Mach. Learn. Res. 2013, 14:1229-1250. URL: 〈http://jmlr.org/papers/v14/niyogi13a.html〉.
    • (2013) J. Mach. Learn. Res. , vol.14 , pp. 1229-1250
    • Niyogi, P.1
  • 19
    • 84876865956 scopus 로고    scopus 로고
    • Managing Sparsity, Time, and Quality of Inference in Topic Models
    • K. Than, T.B. Ho, Managing Sparsity, Time, and Quality of Inference in Topic Models, Technical Report, 2012.
    • (2012) Technical Report
    • Than, K.1    Ho, T.B.2
  • 23
    • 0032201716 scopus 로고    scopus 로고
    • An optimal algorithm for approximate nearest neighbor searching fixed dimensions
    • ISSN 0004-5411, URL: 〈〉
    • Arya S., Mount D.M., Netanyahu N.S., Silverman R., Wu A.Y. An optimal algorithm for approximate nearest neighbor searching fixed dimensions. J. ACM 1998, 45(6):891-923. ISSN 0004-5411, URL: 〈http://doi.acm.org/10.1145/293347.293348〉. 10.1145/293347.293348.
    • (1998) J. ACM , vol.45 , Issue.6 , pp. 891-923
    • Arya, S.1    Mount, D.M.2    Netanyahu, N.S.3    Silverman, R.4    Wu, A.Y.5
  • 24
    • 0020937087 scopus 로고
    • Fast algorithms for the all nearest neighbors problem
    • ISSN 0272-5428 〈〉.
    • K.L. Clarkson, Fast algorithms for the all nearest neighbors problem, in: IEEE Annual Symposium on Foundations of Computer Science, 1983, pp. 226-232. ISSN 0272-5428 〈〉. http://doi.ieeecomputersociety.org/10.1109/SFCS.1983.16.
    • (1983) IEEE Annual Symposium on Foundations of Computer Science , pp. 226-232
    • Clarkson, K.L.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.