메뉴 건너뛰기




Volumn 15, Issue 1, 2012, Pages 141-160

Initial-boundary-value problems for the one-dimensional time-fractional diffusion equation

Author keywords

Caputo fractional derivative; Generalized solution; Initial boundary value problems; Maximum principle; Mittag Leffler function; Spectral method; Time fractional diffusion equation

Indexed keywords


EID: 84861201332     PISSN: 13110454     EISSN: 13142444     Source Type: Journal    
DOI: 10.2478/s13540-012-0010-7     Document Type: Article
Times cited : (201)

References (29)
  • 1
    • 56549113359 scopus 로고    scopus 로고
    • Duhamel-type representation of the solutions of nonlocal boundary value problems for the fractional diffusion-wave equation
    • Bulgarian Academy of Sciences, Sofia
    • E.G. Bazhlekova, Duhamel-type representation of the solutions of nonlocal boundary value problems for the fractional diffusion-wave equation. In: "Transform Methods and Special Functions' Varna 1996" (Proc. 2nd Int. Workshop), Bulgarian Academy of Sciences, Sofia (1998), 32-40.
    • (1998) "Transform Methods and Special Functions' Varna 1996" (Proc. 2nd Int. Workshop) , pp. 32-40
    • Bazhlekova, E.G.1
  • 3
    • 34547198283 scopus 로고    scopus 로고
    • Polymer translocation through a nanopore: A showcase of anomalous diffusion
    • R
    • J.L.A. Dubbeldam, A. Milchev, V.G. Rostiashvili, and T.A. Vilgis, Polymer translocation through a nanopore: A showcase of anomalous diffusion. Physical Review E 76 (2007), 010801 (R).
    • (2007) Physical Review e , vol.76 , pp. 010801
    • Dubbeldam, J.L.A.1    Milchev, A.2    Rostiashvili, V.G.3    Vilgis, T.A.4
  • 6
    • 32044462506 scopus 로고    scopus 로고
    • On the Cauchy and multi-point problems for partial pseudo-differential equations of fractional order
    • R. Gorenflo, Yu. Luchko and S. Umarov, On the Cauchy and multi-point problems for partial pseudo-differential equations of fractional order. Fract. Calc. Appl. Anal. 3, No 3 (2000), 249-277; http://www.math.bas.bg/∼fcaa
    • (2000) Fract. Calc. Appl. Anal. , vol.3 , Issue.3 , pp. 249-277
    • Gorenflo, R.1    Luchko, Yu.2    Umarov, S.3
  • 8
    • 80051704252 scopus 로고    scopus 로고
    • Existence and uniqueness of the solution for a time-fractional diffusion equation
    • DOI: 10.2478/s13540-011-0025-5, hfill
    • J. Kemppainen, Existence and uniqueness of the solution for a time-fractional diffusion equation. Fract. Calc. Appl. Anal. 14, No 3 (2011), 411-418; DOI: 10.2478/s13540-011-0025-5, hfill http://www.springerlink.com/ content/1311-0454/14/3/
    • (2011) Fract. Calc. Appl. Anal. , vol.14 , Issue.3 , pp. 411-418
    • Kemppainen, J.1
  • 11
    • 77957822720 scopus 로고    scopus 로고
    • Initial-boundary-value problems for the generalized multiterm time-fractional diffusion equation
    • Yu. Luchko, Initial-boundary-value problems for the generalized multiterm time-fractional diffusion equation. J. Math. Anal. Appl. 374, No 2 (2011), 538-548.
    • (2011) J. Math. Anal. Appl. , vol.374 , Issue.2 , pp. 538-548
    • Luchko, Yu.1
  • 12
    • 79952715325 scopus 로고    scopus 로고
    • Modeling anomalous heat transport in geothermal reservoirs via fractional diffusion equations
    • Yu. Luchko and A. Punzi, Modeling anomalous heat transport in geothermal reservoirs via fractional diffusion equations. Intern. Journal on Geomathematics 1, No 2 (2011), 257-276.
    • (2011) Intern. Journal on Geomathematics , vol.1 , Issue.2 , pp. 257-276
    • Luchko, Yu.1    Punzi, A.2
  • 13
    • 76449091249 scopus 로고    scopus 로고
    • Some uniqueness and existence results for the initialboundary- value problems for the generalized time-fractional diffusion equation
    • Yu. Luchko, Some uniqueness and existence results for the initialboundary- value problems for the generalized time-fractional diffusion equation. Comp. and Math. with Appl. 59, No 5 (2010), 1766-1772.
    • (2010) Comp. and Math. with Appl. , vol.59 , Issue.5 , pp. 1766-1772
    • Luchko, Yu.1
  • 14
    • 56549085438 scopus 로고    scopus 로고
    • Maximum principle for the generalized time-fractional diffusion equation
    • Yu. Luchko, Maximum principle for the generalized time-fractional diffusion equation. J. Math. Anal. Appl. 351, No 1 (2009), 218-223.
    • (2009) J. Math. Anal. Appl. , vol.351 , Issue.1 , pp. 218-223
    • Luchko, Yu.1
  • 15
    • 77957773191 scopus 로고    scopus 로고
    • Boundary value problems for the generalized timefractional diffusion equation of distributed order
    • Yu. Luchko, Boundary value problems for the generalized timefractional diffusion equation of distributed order. Fract. Calc. Appl. Anal. 12, No 4 (2009), 409-422; http://www.math.bas.bg/∼fcaa
    • (2009) Fract. Calc. Appl. Anal. , vol.12 , Issue.4 , pp. 409-422
    • Luchko, Yu.1
  • 16
    • 54349111952 scopus 로고    scopus 로고
    • Operational method in fractional calculus
    • Yu. Luchko, Operational method in fractional calculus. Fract. Calc. Appl. Anal. 2, No 4 (1999), 463-489; http://www.math.bas.bg/∼fcaa
    • (1999) Fract. Calc. Appl. Anal. , vol.2 , Issue.4 , pp. 463-489
    • Luchko, Yu.1
  • 17
    • 0012659515 scopus 로고    scopus 로고
    • An operational method for solving fractional differential equations with the Caputo derivatives
    • Yu. Luchko and R. Gorenflo, An operational method for solving fractional differential equations with the Caputo derivatives. Acta Mathematica Vietnamica 24 (1999), 207-233.
    • (1999) Acta Mathematica Vietnamica , vol.24 , pp. 207-233
    • Luchko, Yu.1    Gorenflo, R.2
  • 18
    • 3042776917 scopus 로고    scopus 로고
    • Fractional calculus in bioengineering
    • R.L. Magin, Fractional Calculus in Bioengineering: Part1, Part 2 and Part 3. Critical Reviews in Biomedical Engineering 32 (2004), 1-104, 105-193, 195-377. (Pubitemid 38878731)
    • (2004) Critical Reviews in Biomedical Engineering , vol.32 , Issue.1 , pp. 1-104
    • Magin, R.L.1
  • 20
    • 0030464353 scopus 로고    scopus 로고
    • Fractional relaxation-oscillation and fractional diffusionwave phenomena
    • F. Mainardi, Fractional relaxation-oscillation and fractional diffusionwave phenomena. Chaos, Solitons and Fractals 7(1996), 1461-1477.
    • (1996) Chaos, Solitons and Fractals , vol.7 , pp. 1461-1477
    • Mainardi, F.1
  • 21
    • 70449607356 scopus 로고    scopus 로고
    • Fractional Cauchy problems on bounded domains
    • M.M. Meerschaert, E. Nane, and P. Vellaisamy, Fractional Cauchy problems on bounded domains. Ann. Probab. 37, No 3 (2009), 979-1007.
    • (2009) Ann. Probab. , vol.37 , Issue.3 , pp. 979-1007
    • Meerschaert, M.M.1    Nane, E.2    Vellaisamy, P.3
  • 22
    • 4043151477 scopus 로고    scopus 로고
    • The restaurant at the end of the random walk: Recent developments in the description of anomalous transport by fractional dynamics
    • DOI 10.1088/0305-4470/37/31/R01, PII S0305447004713190
    • R. Metzler and J. Klafter, The restaurant at the end of the random walk: Recent developments in the description of anomalous transport by fractional dynamics. J. Phys. A. Math. Gen. 37 (2004), R161-R208. (Pubitemid 39063557)
    • (2004) Journal of Physics A: Mathematical and General , vol.37 , Issue.31
    • Metzler, R.1    Klafter, J.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.