메뉴 건너뛰기




Volumn , Issue , 2006, Pages 237-263

A statistical framework for the prediction of fault-proneness

Author keywords

[No Author keywords available]

Indexed keywords


EID: 84900197051     PISSN: None     EISSN: None     Source Type: Book    
DOI: 10.4018/978-1-59140-941-1.ch010     Document Type: Chapter
Times cited : (79)

References (40)
  • 2
    • 0001622174 scopus 로고    scopus 로고
    • A validation of object-oriented design metrics as quality indicators
    • Basili, V. R., Briand, L. C., & Melo, W. L. (1996). A validation of object-oriented design metrics as quality indicators. IEEE Transactions on Software Engineering, 22(10), 751-761.
    • (1996) IEEE Transactions On Software Engineering , vol.22 , Issue.10 , pp. 751-761
    • Basili, V.R.1    Briand, L.C.2    Melo, W.L.3
  • 3
    • 84969756364 scopus 로고    scopus 로고
    • Nearest neighbor sampling for better defect prediction
    • Boetticher, G. D. (2005). Nearest neighbor sampling for better defect prediction. ACM SIGSOFT Software Engineering Notes, 30(4), 1-6.
    • (2005) ACM SIGSOFT Software Engineering Notes , vol.30 , Issue.4 , pp. 1-6
    • Boetticher, G.D.1
  • 4
    • 0030211964 scopus 로고    scopus 로고
    • Bagging predictors
    • Breiman, L. (1996). Bagging predictors. Machine Learning, 24, 123-140.
    • (1996) Machine Learning , vol.24 , pp. 123-140
    • Breiman, L.1
  • 5
    • 0035478854 scopus 로고    scopus 로고
    • Random forests
    • Breiman, L. (2001). Random forests.Machine Learning, 45, 5-32.
    • (2001) Machine Learning , vol.45 , pp. 5-32
    • Breiman, L.1
  • 9
    • 0027702759 scopus 로고
    • Developing interpretable models with optimized set reduction for identifying high-risk software components
    • Briand, L. C., Basili, V. R., & Hetmanski, C. J. (1993). Developing interpretable models with optimized set reduction for identifying high-risk software components. IEEE Transactions on Software Engineering, 19(11), 1028-1044.
    • (1993) IEEE Transactions On Software Engineering , vol.19 , Issue.11 , pp. 1028-1044
    • Briand, L.C.1    Basili, V.R.2    Hetmanski, C.J.3
  • 11
    • 20444392475 scopus 로고    scopus 로고
    • Technical Report No. 666. Berkeley, CA: University of Berkeley, Department of Statistics
    • Chen, C., Liaw, A., & Breiman, L. (2004). Using random forest to learn imbalanced data. Technical Report No. 666. Berkeley, CA: University of Berkeley, Department of Statistics.
    • (2004) Using Random Forest to Learn Imbalanced Data
    • Chen, C.1    Liaw, A.2    Breiman, L.3
  • 12
    • 85129530187 scopus 로고
    • K*: An instance-based learner using an entropic distance measure
    • Tahoe City, CA, July 9-12, San Francisco, CA: Morgan Kaufmann
    • Cleary, J. G., & Trigg, L. E. (1995). K*: An instance-based learner using an entropic distance measure. In the Proceedings of the 12th International Conference on Machine Learning, Tahoe City, CA, July 9-12 (pp. 108-114). San Francisco, CA: Morgan Kaufmann.
    • (1995) Proceedings of the 12th International Conference On Machine Learning , pp. 108-114
    • Cleary, J.G.1    Trigg, L.E.2
  • 13
    • 12344294601 scopus 로고    scopus 로고
    • BagBoosting for tumor classification with gene expression data
    • Dettling, M. (2004). BagBoosting for tumor classification with gene expression data. Bioinformatics, 20(18), 3583-3593.
    • (2004) Bioinformatics , vol.20 , Issue.18 , pp. 3583-3593
    • Dettling, M.1
  • 14
    • 0032301662 scopus 로고    scopus 로고
    • Industrial application of criticality prediction in software development
    • Paderborn, Germany, November, Washington, D.C.: IEEE Computer Society
    • Ebert, C., & Baisch, E. (1998). Industrial application of criticality prediction in software development. ISSRE, the Ninth International Symposium on Software Reliability Engineering, Paderborn, Germany, November (pp. 80-89). Washington, D.C.: IEEE Computer Society.
    • (1998) ISSRE, the Ninth International Symposium On Software Reliability Engineering , pp. 80-89
    • Ebert, C.1    Baisch, E.2
  • 15
    • 0000391980 scopus 로고    scopus 로고
    • Classification techniques for metric-based software development
    • Ebert, C. (1996). Classification techniques for metric-based software development. Software Quality Journal, 5(4), 255-272.
    • (1996) Software Quality Journal , vol.5 , Issue.4 , pp. 255-272
    • Ebert, C.1
  • 16
    • 0033346610 scopus 로고    scopus 로고
    • A critique of software defect prediction models
    • September/October
    • Fenton, N., & Neil, M. (1999, September/October). A critique of software defect prediction models. IEEE Transactions on Software Engineering, 25(5), 675-689.
    • (1999) IEEE Transactions On Software Engineering , vol.25 , Issue.5 , pp. 675-689
    • Fenton, N.1    Neil, M.2
  • 17
    • 0033281425 scopus 로고    scopus 로고
    • Large margin classification using the perceptron algorithm
    • Freund, Y., & Schapire, R. E. (1999). Large margin classification using the perceptron algorithm. Machine Learning, 37(3), 277-296.
    • (1999) Machine Learning , vol.37 , Issue.3 , pp. 277-296
    • Freund, Y.1    Schapire, R.E.2
  • 18
    • 0011711452 scopus 로고    scopus 로고
    • Regression tree modeling for the prediction of software quality
    • H. Pham (Ed.), Anaheim, CA, March 12-14, New Brunswick, NJ: ISSAT
    • Gokhale, S. S., & Lyu, M. R. (1997). Regression tree modeling for the prediction of software quality. In H. Pham (Ed.), The Third ISSAT International Conference on Reliability and Quality in Design, Anaheim, CA, March 12-14 (pp.31-36). New Brunswick, NJ: ISSAT.
    • (1997) The Third ISSAT International Conference On Reliability and Quality In Design , pp. 31-36
    • Gokhale, S.S.1    Lyu, M.R.2
  • 19
    • 84871122711 scopus 로고    scopus 로고
    • Predicting fault prone modules by the dempster-shafer belief networks
    • Montreal Canada, October, Los Alamitos, CA: IEEE Computer Society
    • Guo, L., Cukic, B., & Singh, H. (2003). Predicting fault prone modules by the dempster-shafer belief networks. ASE2003, the 18th IEEE International Conference on Automated Software Engineering, Montreal Canada, October (pp. 249-252). Los Alamitos, CA: IEEE Computer Society.
    • (2003) ASE2003, the 18th IEEE International Conference On Automated Software Engineering , pp. 249-252
    • Guo, L.1    Cukic, B.2    Singh, H.3
  • 20
    • 0020524559 scopus 로고
    • A method of comparing the areas under receiver operating characteristic curves derived from the same cases
    • Hanley, J. A., & McNeil, B. J. (1983). A method of comparing the areas under receiver operating characteristic curves derived from the same cases. Radiology, 148, 839-843.
    • (1983) Radiology , vol.148 , pp. 839-843
    • Hanley, J.A.1    McNeil, B.J.2
  • 21
    • 0020083498 scopus 로고
    • The meaning and use of the area under a receiver operating characteristic (ROC) curve
    • Hanley, J. A., & McNeil, B. J. (1982). The meaning and use of the area under a receiver operating characteristic (ROC) curve. Radiology, 143, 29-36.
    • (1982) Radiology , vol.143 , pp. 29-36
    • Hanley, J.A.1    McNeil, B.J.2
  • 24
    • 0002856379 scopus 로고
    • A neural network approach for early detection of program modules having high risk in the maintenance phase
    • Khoshgoftaar, T. M., & Lanning, D. L. (1995). A neural network approach for early detection of program modules having high risk in the maintenance phase. Journal of Systems and Software, 29(1), 85-91.
    • (1995) Journal of Systems and Software , vol.29 , Issue.1 , pp. 85-91
    • Khoshgoftaar, T.M.1    Lanning, D.L.2
  • 25
    • 0029754927 scopus 로고    scopus 로고
    • Early quality prediction: A case study in telecommunications
    • Khoshgoftaar, T. M., Allen, E. B., Kalaichelvan, K. S., & Goel, N. (1996). Early quality prediction: A case study in telecommunications. IEEE Software, 13(1), 65-71.
    • (1996) IEEE Software , vol.13 , Issue.1 , pp. 65-71
    • Khoshgoftaar, T.M.1    Allen, E.B.2    Kalaichelvan, K.S.3    Goel, N.4
  • 27
    • 37349129968 scopus 로고    scopus 로고
    • Tree-based software quality estimation models for fault prediction
    • Ottawa, Canada, June 4-7, Los Alamitos, CA: IEEE Computer Society
    • Khoshgoftaar, T. M., & Seliya, N. (2002). Tree-based software quality estimation models for fault prediction. METRICS 2002, the Eighth IIIE Symposium on Software Metrics, Ottawa, Canada, June 4-7 (pp. 203-214). Los Alamitos, CA: IEEE Computer Society.
    • (2002) METRICS 2002, the Eighth IIIE Symposium On Software Metrics , pp. 203-214
    • Khoshgoftaar, T.M.1    Seliya, N.2
  • 28
    • 0031998121 scopus 로고    scopus 로고
    • Machine learning for the detection of oil spills in satellite radar images
    • Kubat, M., Holte, R. C., & Matwin, S. (1998). Machine learning for the detection of oil spills in satellite radar images. Machine Learning, 30(2-3), 195-215.
    • (1998) Machine Learning , vol.30 , Issue.2-3 , pp. 195-215
    • Kubat, M.1    Holte, R.C.2    Matwin, S.3
  • 35
    • 40549142870 scopus 로고    scopus 로고
    • See5, Retrieved 2004, from
    • See5. (2005). Software package. Retrieved 2004, from http://www.rulequest.com/see5-info.html
    • (2005) Software Package
  • 36
    • 0024123707 scopus 로고
    • Learning from examples: Generation and evaluation of decision trees for software resource analysis
    • Selby, R. W., & Porter, A. A. (1988). Learning from examples: generation and evaluation of decision trees for software resource analysis. IEEE Transactions on Software Engineering, 14(12), 1743-1757.
    • (1988) IEEE Transactions On Software Engineering , vol.14 , Issue.12 , pp. 1743-1757
    • Selby, R.W.1    Porter, A.A.2
  • 39
    • 0002492673 scopus 로고
    • Measurement and defect modeling for a legacy software system
    • Troster, J., & Tian, J. (1995). Measurement and defect modeling for a legacy software system. Annals of Software Engineering, 1, 95-118.
    • (1995) Annals of Software Engineering , vol.1 , pp. 95-118
    • Troster, J.1    Tian, J.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.