메뉴 건너뛰기




Volumn 196, Issue 11, 2014, Pages 1941-1949

Reaction kinetics of substrate transglycosylation catalyzed by TreX of Sulfolobus solfataricus and effects on glycogen breakdown

Author keywords

[No Author keywords available]

Indexed keywords

BACTERIAL ENZYME; BETA CYCLODEXTRIN; GLUCOSE 1 PHOSPHATE; GLYCOGEN; GLYCOGEN PHOSPHORYLASE; LIVER EXTRACT; TREX ENZYME; UNCLASSIFIED DRUG;

EID: 84899762320     PISSN: 00219193     EISSN: 10985530     Source Type: Journal    
DOI: 10.1128/JB.01442-13     Document Type: Article
Times cited : (10)

References (40)
  • 1
    • 0142040430 scopus 로고    scopus 로고
    • From bacterial glycogen to starch: understanding the biogenesis of the plant starch granule
    • Ball SG, Morell MK. 2003. From bacterial glycogen to starch: understanding the biogenesis of the plant starch granule. Annu. Rev. Plant Biol. 54:207-233. http://dx.doi.org/10.1146/annurev.arplant.54.031902.134927.
    • (2003) Annu. Rev. Plant Biol , vol.54 , pp. 207-233
    • Ball, S.G.1    Morell, M.K.2
  • 3
    • 0021144092 scopus 로고
    • Bacterial glycogen synthesis and its regulation
    • Preiss J. 1984. Bacterial glycogen synthesis and its regulation. Annu. Rev. Microbiol. 38:419-458. http://dx.doi.org/10.1146/annurev.mi.38.100184.002223.
    • (1984) Annu. Rev. Microbiol. , vol.38 , pp. 419-458
    • Preiss, J.1
  • 4
    • 0024834054 scopus 로고
    • Physiology, biochemistry and genetics of bacterial glycogen synthesis
    • Preiss J, Romeo T. 1989. Physiology, biochemistry and genetics of bacterial glycogen synthesis. Adv. Microb. Physiol. 30:183-238.
    • (1989) Adv. Microb. Physiol. , vol.30 , pp. 183-238
    • Preiss, J.1    Romeo, T.2
  • 6
    • 28844492475 scopus 로고    scopus 로고
    • The maltodextrin system of Escherichia coli: glycogen-derived endogenous induction and osmoregulation
    • Dippel R, Bergmiller T, Bohm A, Boos W. 2005. The maltodextrin system of Escherichia coli: glycogen-derived endogenous induction and osmoregulation. J. Bacteriol. 187:8332-8339. http://dx.doi.org/10.1128/JB.187.24.8332-8339.2005.
    • (2005) J. Bacteriol. , vol.187 , pp. 8332-8339
    • Dippel, R.1    Bergmiller, T.2    Bohm, A.3    Boos, W.4
  • 7
    • 84899768771 scopus 로고    scopus 로고
    • Roles of glycoside hydrolase family 13 enzymes in maltodextrin/glycogen metabolism in Bacillus subtilis and Escherichia coli
    • Ph. D. thesis. Seoul National University, Seoul, South Korea
    • Park JT. 2008. Roles of glycoside hydrolase family 13 enzymes in maltodextrin/glycogen metabolism in Bacillus subtilis and Escherichia coli. Ph. D. thesis. Seoul National University, Seoul, South Korea.
    • (2008)
    • Park, J.T.1
  • 8
    • 0028174763 scopus 로고
    • Glycogen in Bacillus subtilis: molecular characterization of an operon encoding enzymes involved in glycogen biosynthesis and degradation
    • Kiel JAKW, Boels JM, Geldman G, Venema G. 1994. Glycogen in Bacillus subtilis: molecular characterization of an operon encoding enzymes involved in glycogen biosynthesis and degradation. Mol. Microbiol. 11:203-218. http://dx.doi.org/10.1111/j.1365-2958.1994.tb00301.x.
    • (1994) Mol. Microbiol. , vol.11 , pp. 203-218
    • Kiel, J.A.K.W.1    Boels, J.M.2    Geldman, G.3    Venema, G.4
  • 9
    • 67650516761 scopus 로고    scopus 로고
    • The crystal structures of the open and catalytically competent closed conformation of Escherichia coli glycogen synthase
    • Sheng F, Jia X, Yep A, Preiss J, Geiger H. 2009. The crystal structures of the open and catalytically competent closed conformation of Escherichia coli glycogen synthase. J. Biol. Chem. 284:17796-17807. http://dx.doi.org/10.1074/jbc. M809804200.
    • (2009) J. Biol. Chem. , vol.284 , pp. 17796-17807
    • Sheng, F.1    Jia, X.2    Yep, A.3    Preiss, J.4    Geiger, H.5
  • 10
    • 77953494275 scopus 로고    scopus 로고
    • Structural rationale for the short branched substrate specificity of the glycogen debranching enzyme GlgX
    • Song HN, Jung TY, Park JT, Park BC, Myung PK, Boos W, Woo EJ, Park KH. 2010. Structural rationale for the short branched substrate specificity of the glycogen debranching enzyme GlgX. Proteins 78:1847-1855. http://dx.doi.org/10.1002/prot.22697.
    • (2010) Proteins , vol.78 , pp. 1847-1855
    • Song, H.N.1    Jung, T.Y.2    Park, J.T.3    Park, B.C.4    Myung, P.K.5    Boos, W.6    Woo, E.J.7    Park, K.H.8
  • 11
    • 77449094593 scopus 로고    scopus 로고
    • Structural features of the Nostoc punctiforme debranching enzyme reveal the basis of its mechanism and substrate specificity
    • Dumbrepatil AB, Choi JH, Park JT, Kim MJ, Kim TJ, Woo EJ, Park KH. 2010. Structural features of the Nostoc punctiforme debranching enzyme reveal the basis of its mechanism and substrate specificity. Proteins 78: 348-356. http://dx.doi.org/10.1002/prot.22548.
    • (2010) Proteins , vol.78 , pp. 348-356
    • Dumbrepatil, A.B.1    Choi, J.H.2    Park, J.T.3    Kim, M.J.4    Kim, T.J.5    Woo, E.J.6    Park, K.H.7
  • 12
    • 0014951956 scopus 로고
    • Purification and properties of Pseudomonas isoamylase
    • Yokobayashi K, Misaki A, Harada T. 1970. Purification and properties of Pseudomonas isoamylase. Biochim. Biophys. Acta 212:458-469. http://dx.doi.org/10.1016/0005-2744(70)90252-4.
    • (1970) Biochim. Biophys. Acta , vol.212 , pp. 458-469
    • Yokobayashi, K.1    Misaki, A.2    Harada, T.3
  • 13
    • 84899705172 scopus 로고    scopus 로고
    • Purification and properties of pullulanase from Bacillus halodurans
    • Asha R, Niyonzima FN, Sunil SM. 2013. Purification and properties of pullulanase from Bacillus halodurans. Int. Res. J. Biol. Sci. 2:35-43. http://www.isca.in/IJBS/Archive/v2i3/7.ISCA-IRJBS-2013-005.pdf.
    • (2013) Int. Res. J. Biol. Sci. , vol.2 , pp. 35-43
    • Asha, R.1    Niyonzima, F.N.2    Sunil, S.M.3
  • 14
    • 0033968786 scopus 로고    scopus 로고
    • Cloning and nucleotide sequence of a gene encoding a glycogen debranching enzyme in the trehalose operon from Arthrobacter sp. Q36
    • Maruta K, Kubota M, Fukuda S, Kurimoto M. 2000. Cloning and nucleotide sequence of a gene encoding a glycogen debranching enzyme in the trehalose operon from Arthrobacter sp. Q36. Biochim. Biophys. Acta 1476:377-381. http://dx.doi.org/10.1016/S0167-4838(99)00253-8.
    • (2000) Biochim. Biophys. Acta , vol.1476 , pp. 377-381
    • Maruta, K.1    Kubota, M.2    Fukuda, S.3    Kurimoto, M.4
  • 15
    • 9144221530 scopus 로고    scopus 로고
    • TreT, a novel trehalose glycosyltransferring synthase of the hyperthermophilic archaeon Thermococcus litoralis
    • Qu Q, Lee SJ, Boos W. 2004. TreT, a novel trehalose glycosyltransferring synthase of the hyperthermophilic archaeon Thermococcus litoralis. J. Biol. Chem. 279:47890-47897. http://dx.doi.org/10.1074/jbc. M404955200.
    • (2004) J. Biol. Chem. , vol.279 , pp. 47890-47897
    • Qu, Q.1    Lee, S.J.2    Boos, W.3
  • 16
    • 34250184680 scopus 로고    scopus 로고
    • Cloning and characterization of glycogen-debranching enzyme from hyperthermophilic archaeon Sulfolobus shibatae
    • Van TT, Ryu SI, Lee KJ, Kim EJ, Lee SB. 2007. Cloning and characterization of glycogen-debranching enzyme from hyperthermophilic archaeon Sulfolobus shibatae. J. Microbiol. Biotechnol. 17:792-799. http://www.ncbi.nlm.nih.gov/pubmed/18051301.
    • (2007) J. Microbiol. Biotechnol. , vol.17 , pp. 792-799
    • Van, T.T.1    Ryu, S.I.2    Lee, K.J.3    Kim, E.J.4    Lee, S.B.5
  • 17
    • 0030573162 scopus 로고    scopus 로고
    • Cloning and sequencing of a cluster of genes encoding novel enzymes of trehalose biosynthesis from thermophilic archaebacterium Sulfolobus acidocaldarius
    • Maruta K, Mitsuzumi H, Nakada T, Kubota M, Chaen H, Fukuda S, Sugimoto T, Kurimoto M. 1996. Cloning and sequencing of a cluster of genes encoding novel enzymes of trehalose biosynthesis from thermophilic archaebacterium Sulfolobus acidocaldarius. Biochim. Biophys. Acta 1291:177-181. http://dx.doi.org/10.1016/S0304-4165(96)00082-7.
    • (1996) Biochim. Biophys. Acta , vol.1291 , pp. 177-181
    • Maruta, K.1    Mitsuzumi, H.2    Nakada, T.3    Kubota, M.4    Chaen, H.5    Fukuda, S.6    Sugimoto, T.7    Kurimoto, M.8
  • 18
    • 0034559945 scopus 로고    scopus 로고
    • The Saccharomyces cerevisiae YPR184w gene encodes the glycogen debranching enzyme
    • Teste MA, Enjalbert B, Parrou JL, Prancois JM. 2000. The Saccharomyces cerevisiae YPR184w gene encodes the glycogen debranching enzyme. FEMS Microbiol. Lett. 193:105-110. http://dx.doi.org/10.1111/j.1574-6968.2000.tb09410.x.
    • (2000) FEMS Microbiol. Lett. , vol.193 , pp. 105-110
    • Teste, M.A.1    Enjalbert, B.2    Parrou, J.L.3    Prancois, J.M.4
  • 19
    • 21844472237 scopus 로고    scopus 로고
    • Glycogen synthesis in the absence of glycogenin in the yeast Saccharomyces cerevisiae
    • Torija MJ, Novo M, Lemassu A, Wilson W, Roach PJ, Francois J, Parrou JL. 2005. Glycogen synthesis in the absence of glycogenin in the yeast Saccharomyces cerevisiae. FEBS Lett. 579:3999-4004. http://dx.doi.org/10.1016/j.febslet.2005.06.007.
    • (2005) FEBS Lett , vol.579 , pp. 3999-4004
    • Torija, M.J.1    Novo, M.2    Lemassu, A.3    Wilson, W.4    Roach, P.J.5    Francois, J.6    Parrou, J.L.7
  • 20
    • 34347380952 scopus 로고    scopus 로고
    • TreX from Sulfolobus solfataricus ATCC 35092 displays isoamylase and 4-α-glucanotransferase activities
    • Park HS, Park JT, Kang HK, Cha H, Kim DS, Kim JW, Park KH. 2007. TreX from Sulfolobus solfataricus ATCC 35092 displays isoamylase and 4-α-glucanotransferase activities. Biosci. Biotechnol. Biochem. 71:1348-1352. http://dx.doi.org/10.1271/bbb.70016.
    • (2007) Biosci. Biotechnol. Biochem. , vol.71 , pp. 1348-1352
    • Park, H.S.1    Park, J.T.2    Kang, H.K.3    Cha, H.4    Kim, D.S.5    Kim, J.W.6    Park, K.H.7
  • 21
    • 57649133949 scopus 로고    scopus 로고
    • Structural insight into the bifunctional mechanism of the glycogendebranching enzyme TreX from the archaeon Sulfolobus solfataricus
    • Woo EJ, Lee S, Cha H, Park JT, Yoon SM, Song HN, Park KH. 2008. Structural insight into the bifunctional mechanism of the glycogendebranching enzyme TreX from the archaeon Sulfolobus solfataricus. J. Biol. Chem. 283:28641-28648. http://dx.doi.org/10.1074/jbc. M802560200.
    • (2008) J. Biol. Chem. , vol.283 , pp. 28641-28648
    • Woo, E.J.1    Lee, S.2    Cha, H.3    Park, J.T.4    Yoon, S.M.5    Song, H.N.6    Park, K.H.7
  • 22
    • 0032942009 scopus 로고    scopus 로고
    • Modes of action of acarbose hydrolysis and transglycosylation catalyzed by a thermostable maltogenic amylase, the gene for which was cloned from a Thermus strain
    • Kim TJ, Kim MJ, Kim BC, Kim JC, Cheong TK, Kim JW, Park KH. 1999. Modes of action of acarbose hydrolysis and transglycosylation catalyzed by a thermostable maltogenic amylase, the gene for which was cloned from a Thermus strain. Appl. Environ. Microbiol. 65:1644-1651.
    • (1999) Appl. Environ. Microbiol. , vol.65 , pp. 1644-1651
    • Kim, T.J.1    Kim, M.J.2    Kim, B.C.3    Kim, J.C.4    Cheong, T.K.5    Kim, J.W.6    Park, K.H.7
  • 24
    • 33747333106 scopus 로고
    • Use of dinitrosalycylic acid reagent for determination of reducing sugars
    • Miller GL. 1959. Use of dinitrosalycylic acid reagent for determination of reducing sugars. Anal. Chem. 31:426-428. http://dx.doi.org/10.1021/ac60147a030.
    • (1959) Anal. Chem. , vol.31 , pp. 426-428
    • Miller, G.L.1
  • 25
    • 0017184389 scopus 로고
    • A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding
    • Bradford M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72:248-254. http://dx.doi.org/10.1016/0003-2697(76)90527-3.
    • (1976) Anal. Biochem. , vol.72 , pp. 248-254
    • Bradford, M.1
  • 27
    • 30744439834 scopus 로고    scopus 로고
    • Enzymatic preparation of maltohexaose, maltoheptaose, and maltooctaose by the preferential cyclomaltooligosaccharide (cyclodextrin) ring-opening reaction of Pyrococcus furiosus thermostable amylase
    • Yang SJ, Lee HS, Kim JW, Lee MH, Auh JH, Lee BH, Park KH. 2006. Enzymatic preparation of maltohexaose, maltoheptaose, and maltooctaose by the preferential cyclomaltooligosaccharide (cyclodextrin) ring-opening reaction of Pyrococcus furiosus thermostable amylase. Carbohydr. Res. 341:420-424. http://dx.doi.org/10.1016/j.carres.2005.11.031.
    • (2006) Carbohydr. Res. , vol.341 , pp. 420-424
    • Yang, S.J.1    Lee, H.S.2    Kim, J.W.3    Lee, M.H.4    Auh, J.H.5    Lee, B.H.6    Park, K.H.7
  • 29
    • 0014139817 scopus 로고
    • The determination of amylo-1, 6-glucosidase
    • Hers HG, Verhue W, van Hoof F. 1967. The determination of amylo-1,6-glucosidase. Eur. J. Biochem. 2:257-264. http://dx.doi.org/10.1111/j.1432-1033.1967.tb00133.x.
    • (1967) Eur. J. Biochem. , vol.2 , pp. 257-264
    • Hers, H.G.1    Verhue, W.2    van Hoof, F.3
  • 30
    • 0028762263 scopus 로고
    • Separation and quantitative determination of nanogram quantities of maltodextrins and isomaltodextrins by thinlayer chromatography
    • Robyt JF, Mukerjea R. 1994. Separation and quantitative determination of nanogram quantities of maltodextrins and isomaltodextrins by thinlayer chromatography. Carbohydr. Res. 251:187-202. http://dx.doi.org/10.1016/0008-6215(94)84285-X.
    • (1994) Carbohydr. Res. , vol.251 , pp. 187-202
    • Robyt, J.F.1    Mukerjea, R.2
  • 31
    • 9944239242 scopus 로고    scopus 로고
    • Kinetics of substrate transglycosylation by glycoside hydrolase family 3 glucan (1→3)-β-glucosidase from the white-rot fungus Phanerochaete chrysosporium
    • Kawai R, Igarashi K, Kitaoka M, Ishii T, Samejima M. 2004. Kinetics of substrate transglycosylation by glycoside hydrolase family 3 glucan (1→3)-β-glucosidase from the white-rot fungus Phanerochaete chrysosporium. Carbohydr. Res. 339:2851-2857. http://dx.doi.org/10.1016/j.carres.2004.09.019.
    • (2004) Carbohydr. Res. , vol.339 , pp. 2851-2857
    • Kawai, R.1    Igarashi, K.2    Kitaoka, M.3    Ishii, T.4    Samejima, M.5
  • 32
    • 0021446995 scopus 로고
    • Kinetics and mathematical model of hydrolysis and transglycosylation catalysed by cellobiase
    • Gusakov AV, Sinitsyn AP, Goldsteins GH, Klyosov AA. 1984. Kinetics and mathematical model of hydrolysis and transglycosylation catalysed by cellobiase. Enzyme Microb. Technol. 6:275-283. http://dx.doi.org/10.1016/0141-0229(84)90130-3.
    • (1984) Enzyme Microb. Technol. , vol.6 , pp. 275-283
    • Gusakov, A.V.1    Sinitsyn, A.P.2    Goldsteins, G.H.3    Klyosov, A.A.4
  • 33
    • 0026535003 scopus 로고
    • Properties of yeast debranching enzyme and its specificity toward branched cyclodextrins
    • Tabata S, Hizukuri S. 1992. Properties of yeast debranching enzyme and its specificity toward branched cyclodextrins. Eur. J. Biochem. 206:345-348. http://dx.doi.org/10.1111/j.1432-1033.1992.tb16933.x.
    • (1992) Eur. J. Biochem. , vol.206 , pp. 345-348
    • Tabata, S.1    Hizukuri, S.2
  • 34
    • 0027496663 scopus 로고
    • Optimization of molecular design in the evolution of metabolism: the glycogen molecule
    • Meléndez-Hevia E, Waddell TG, Shelton ED. 1993. Optimization of molecular design in the evolution of metabolism: the glycogen molecule. Biochem. J. 295:477-483.
    • (1993) Biochem. J. , vol.295 , pp. 477-483
    • Meléndez-Hevia, E.1    Waddell, T.G.2    Shelton, E.D.3
  • 35
    • 0020463405 scopus 로고
    • Glycogen in thermoacidophilic archaebacteria of the genera Sulfolobus, Thermoproteus, Desulfurococcus and Thermococcus
    • König H, Skorko R, Zillig W, Reiter WD. 1982. Glycogen in thermoacidophilic archaebacteria of the genera Sulfolobus, Thermoproteus, Desulfurococcus and Thermococcus. Arch. Microbiol. 132:297-303. http://dx.doi.org/10.1007/BF00413378.
    • (1982) Arch. Microbiol. , vol.132 , pp. 297-303
    • König, H.1    Skorko, R.2    Zillig, W.3    Reiter, W.D.4
  • 37
    • 0030771358 scopus 로고    scopus 로고
    • How did glycogen structure evolve to satisfy the requirement for rapid mobilization of glucose? A problem of physical constraints in structure building
    • Meléndez R, Meléndez-Hevia E, Cascante M. 1997. How did glycogen structure evolve to satisfy the requirement for rapid mobilization of glucose? A problem of physical constraints in structure building. J. Mol. Evol. 45:446-455.
    • (1997) J. Mol. Evol. , vol.45 , pp. 446-455
    • Meléndez, R.1    Meléndez-Hevia, E.2    Cascante, M.3
  • 38
    • 0026033985 scopus 로고
    • Structural mechanism for glycogen phosphorylase control by phosphorylation and AMP
    • Barford D, Hu SH, Johnson LN. 1991. Structural mechanism for glycogen phosphorylase control by phosphorylation and AMP. J. Mol. Biol. 5:233-260.
    • (1991) J. Mol. Biol. , vol.5 , pp. 233-260
    • Barford, D.1    Hu, S.H.2    Johnson, L.N.3
  • 39
    • 0034660681 scopus 로고    scopus 로고
    • A new allosteric site in glycogen phosphorylase a as a target for drug interactions
    • Oikonomakos NG, Skamnaki VT, Tsitsanou KE, Gavalas NG, Johnson LN. 2000. A new allosteric site in glycogen phosphorylase a as a target for drug interactions. Structure 8:575-584. http://dx.doi.org/10.1016/S0969-2126(00)00144-1.
    • (2000) Structure , vol.8 , pp. 575-584
    • Oikonomakos, N.G.1    Skamnaki, V.T.2    Tsitsanou, K.E.3    Gavalas, N.G.4    Johnson, L.N.5
  • 40
    • 70350668611 scopus 로고    scopus 로고
    • Escherichia coli glycogen metabolism is controlled by the PhoP-PhoQ regulatory system at submillimolar environmental Mg2 concentrations, and is highly interconnected with a wide variety of cellular processes
    • Montero M, Eydallin G, Viale AM, Almagro G, Muñoz FJ, Rahimpour M, Sesma MT, Baroja-Fernández E, Pozueta-Romero J. 2009. Escherichia coli glycogen metabolism is controlled by the PhoP-PhoQ regulatory system at submillimolar environmental Mg2 concentrations, and is highly interconnected with a wide variety of cellular processes. Biochem. J. 424:129-141. http://dx.doi.org/10.1042/BJ20090980.
    • (2009) Biochem. J , vol.424 , pp. 129-141
    • Montero, M.1    Eydallin, G.2    Viale, A.M.3    Almagro, G.4    Muñoz, F.J.5    Rahimpour, M.6    Sesma, M.T.7    Baroja-Fernández, E.8    Pozueta-Romero, J.9


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.