-
1
-
-
40449106707
-
Solution-processed metal nanowire mesh transparent electrodes
-
DOI 10.1021/nl073296g
-
Lee, J.-Y., Connor, S. T., Cui, Y. & Peumans, P. Solution-processed metal nanowire mesh transparent electrodes, Nano Lett. 8, 689-692 (2008). (Pubitemid 351346040)
-
(2008)
Nano Letters
, vol.8
, Issue.2
, pp. 689-692
-
-
Lee, J.-Y.1
Connor, S.T.2
Cui, Y.3
Peumans, P.4
-
2
-
-
68749098686
-
Silver nanowire networks as flexible transparent, conducting films: Extremely highDC to optical conductivity ratios
-
De, S. et al. Silver nanowire networks as flexible transparent, conducting films: Extremely highDC to optical conductivity ratios. ACS Nano 3, 1767-1774 (2009).
-
(2009)
ACS Nano
, vol.3
, pp. 1767-1774
-
-
De, S.1
-
3
-
-
84870719825
-
Past achievements and future challenges in the development of optically transparent electrodes
-
Ellmer, K. Past achievements and future challenges in the development of optically transparent electrodes. Nature Photon. 6, 809-817 (2012).
-
(2012)
Nature Photon
, vol.6
, pp. 809-817
-
-
Ellmer, K.1
-
4
-
-
84884920042
-
Integrating simulations and experiments to predict sheet resistance and optical transmittance in nanowire films for transparent conductors
-
Mutiso, R. M. et al. Integrating simulations and experiments to predict sheet resistance and optical transmittance in nanowire films for transparent conductors, ACS Nano 7, 7654-7663 (2013).
-
(2013)
ACS Nano
, vol.7
, pp. 7654-7663
-
-
Mutiso, R.M.1
-
5
-
-
10844284786
-
Percolation in transparent and conducting carbon nanotube networks
-
DOI 10.1021/nl048435y
-
Hu, L., Hecht, D. S. & Grüner, G. Percolation in transparent and conducting carbon nanotube Networks. Nano Lett. 4, 2513-2517 (2004). (Pubitemid 40002395)
-
(2004)
Nano Letters
, vol.4
, Issue.12
, pp. 2513-2517
-
-
Hu, L.1
Hecht, D.S.2
Gruner, G.3
-
6
-
-
67049173242
-
Continuous and scalable fabrication of transparent conducting carbon nanotube films
-
Dan, B., Irvin, G. C. & Pasquali, M. Continuous and scalable fabrication of transparent conducting carbon nanotube films. ACS Nano 3, 835-843 (2009).
-
(2009)
ACS Nano
, vol.3
, pp. 835-843
-
-
Dan, B.1
Irvin, G.C.2
Pasquali, M.3
-
7
-
-
72849152058
-
Electrical conductivity in single-walled carbon nanotube networks
-
Nirmalraj, P. N. et al. Electrical conductivity in single-walled carbon nanotube networks. Nano Lett. 9, 3890-3895 (2009).
-
(2009)
Nano Lett
, vol.9
, pp. 3890-3895
-
-
Nirmalraj, P.N.1
-
8
-
-
78650121431
-
Modulating conductivity, envirionmental stability of transparent conducting nanotube films on flexible substrates by interfacial engineering
-
Han, J. T. et al. Modulating conductivity, envirionmental stability of transparent conducting nanotube films on flexible substrates by interfacial engineering. ACS Nano 4, 4551-4558 (2010).
-
(2010)
ACS Nano
, vol.4
, pp. 4551-4558
-
-
Han, J.T.1
-
9
-
-
84857373567
-
Self-limited plasmonic welding of silver nanowire junctions
-
Garnett, E. C. et al. Self-limited plasmonic welding of silver nanowire junctions. Nature Mater. 11, 241-249 (2012).
-
(2012)
Nature Mater
, vol.11
, pp. 241-249
-
-
Garnett, E.C.1
-
10
-
-
84874887421
-
Optimization of silver nanowire networks for polymer light emitting diode electrodes
-
Coskun, S., Ates, E. S. & Unalan, H. E. Optimization of silver nanowire networks for polymer light emitting diode electrodes. Nanotechnology 24, 125202/1-8 (2013).
-
(2013)
Nanotechnology
, vol.24
-
-
Coskun, S.1
Ates, E.S.2
Unalan, H.E.3
-
11
-
-
80755159173
-
Electrical breakdown of nanowires
-
Zhao, J., Sun, H., Dai, S., Wang, Y. & Zhu, J. Electrical breakdown of nanowires, Nano Lett. 11, 4647-1651 (2011).
-
(2011)
Nano Lett
, vol.11
, pp. 4647-1651
-
-
Zhao, J.1
Sun, H.2
Dai, S.3
Wang, Y.4
Zhu, J.5
-
12
-
-
84887315364
-
Failure of silver nanowire transparent electrodes under current flow
-
Khaligh, H. H. & Goldthorpe, I. A. Failure of silver nanowire transparent electrodes under current flow. Nanoscale Res. Lett. 8, 235/1-6 (2013).
-
(2013)
Nanoscale Res. Lett
, vol.8
-
-
Khaligh, H.H.1
Goldthorpe, I.A.2
-
13
-
-
84878412823
-
Self-Oriented Nanojoining of Silver Nanowires via Surface Selective Activation
-
Peng, P. et al. Self-Oriented Nanojoining of Silver Nanowires via Surface Selective Activation. Part. Part. Syst. Charact. 30, 420-426 (2013).
-
(2013)
Part. Part. Syst. Charact
, vol.30
, pp. 420-426
-
-
Peng, P.1
-
14
-
-
84864011832
-
Hybrid transparent electrodes of silver nanowires and carbon nanotubes: A low-temperature solution process
-
Tokuno, T., Nogi, M., Jiu, J. & Suganuma, K. Hybrid transparent electrodes of silver nanowires and carbon nanotubes: a low-temperature solution process. Nanoscale Res. Lett. 7, 281/1-7 (2012).
-
(2012)
Nanoscale Res. Lett
, vol.7
-
-
Tokuno, T.1
Nogi, M.2
Jiu, J.3
Suganuma, K.4
-
15
-
-
84881613303
-
Transparent flexible heater based on hybrid of carbon nanotubes and silver nanowires
-
Kim, D. et al. Transparent flexible heater based on hybrid of carbon nanotubes and silver nanowires. Carbon 63, 530-536 (2013).
-
(2013)
Carbon
, vol.63
, pp. 530-536
-
-
Kim, D.1
-
16
-
-
84871646608
-
Improved thermal oxidation stability of solutionprocessable silver nanowire transparent electrode by reduced graphene oxide
-
Ahn, Y., Jeong, Y. & Lee, Y. Improved thermal oxidation stability of solutionprocessable silver nanowire transparent electrode by reduced graphene oxide, ACS Appl. Mater. & Interf. 4, 6410-6414 (2012).
-
(2012)
ACS Appl. Mater. & Interf
, vol.4
, pp. 6410-6414
-
-
Ahn, Y.1
Jeong, Y.2
Lee, Y.3
-
17
-
-
84874417283
-
Reduced graphene oxide/copper nanowire hybrid films as high-performance transparent electrodes
-
Khomanov, I. N. et al. Reduced graphene oxide/copper nanowire hybrid films as high-performance transparent electrodes. ACS Nano 7, 1811-1816 (2013).
-
(2013)
ACS Nano
, vol.7
, pp. 1811-1816
-
-
Khomanov, I.N.1
-
18
-
-
84876408305
-
Using self-assembly to prepare a graphene-silver nanowire hybrid film that is transparent and electrically conductive
-
Tien, H.-W. et al. Using self-assembly to prepare a graphene-silver nanowire hybrid film that is transparent and electrically conductive. Carbon 58, 198-207 (2013).
-
(2013)
Carbon
, vol.58
, pp. 198-207
-
-
Tien, H.-W.1
-
19
-
-
84879510221
-
Transparent, flexible conducting graphene hybrid films with a subpercolating network of silver nanowires
-
Liu, Y., Chang, Q. & Huang, L. Transparent, flexible conducting graphene hybrid films with a subpercolating network of silver nanowires. J. Mater. Chem. C 1, 2970-2974 (2013)
-
(2013)
J. Mater. Chem. C
, vol.1
, pp. 2970-2974
-
-
Liu, Y.1
Chang, Q.2
Huang, L.3
-
20
-
-
84879080520
-
High-performance, transparent, and stretchable electrodes using graphene-metal nanowire hybrid structures
-
Lee, M.-S. et al. High-performance, transparent, and stretchable electrodes using graphene-metal nanowire hybrid structures. Nano Lett. 13, 2814-2821 (2013).
-
(2013)
Nano Lett
, vol.13
, pp. 2814-2821
-
-
Lee, M.-S.1
-
21
-
-
84873127454
-
2D graphene oxide nanosheets as an adhesive over-coating layer for flexible transparent conductive electrodes
-
DOI:10.1038/ srep01112
-
Moon, I. K. et al. 2D graphene oxide nanosheets as an adhesive over-coating layer for flexible transparent conductive electrodes. Sci. Rep. 3, 1112; DOI:10.1038/ srep01112 (2013).
-
(2013)
Sci. Rep
, vol.3
, pp. 1112
-
-
Moon, I.K.1
-
22
-
-
84887092997
-
Co-percolating graphene-wrapped silver nanowire network for high performance, highly stable transparent conducting electrodes
-
Chen, R. et al. Co-percolating graphene-wrapped silver nanowire network for high performance, highly stable transparent conducting electrodes. Adv. Func. Mater. 23, 5150-5158 (2013).
-
(2013)
Adv. Func. Mater
, vol.23
, pp. 5150-5158
-
-
Chen, R.1
-
23
-
-
84874958651
-
Uniformly interconnected silver-nanowire networks for transparent film heaters
-
Kim, T. Y. et al. Uniformly interconnected silver-nanowire networks for transparent film heaters. Adv. Func. Mater. 23, 1250-1255 (2013).
-
(2013)
Adv. Func. Mater
, vol.23
, pp. 1250-1255
-
-
Kim, T.Y.1
-
24
-
-
84897099276
-
Highly robust indium-free transparent conductive electrodes based on composites of silver nanowires and conductive metal oxide
-
DOI: 10.1002/adfm.201303108
-
Zilberberg, K. et al. Highly robust indium-free transparent conductive electrodes based on composites of silver nanowires and conductive metal oxide. Adv. Func. Mater. DOI: 10.1002/adfm.201303108 (2013).
-
(2013)
Adv. Func. Mater
-
-
Zilberberg, K.1
-
25
-
-
84555177285
-
Fused silver nanowires with metal oxide nanoparticles and organic polymers for highly transparent conductors
-
Zhu, R. et al. Fused silver nanowires with metal oxide nanoparticles and organic polymers for highly transparent conductors. ACS Nano 5, 9877-9882 (2011).
-
(2011)
ACS Nano
, vol.5
, pp. 9877-9882
-
-
Zhu, R.1
-
26
-
-
84874433247
-
Highly transparent low resistance ZnO/Ag nanowire/ZnO composite electrode for thin film solar cells
-
Kim, A. et al. Highly transparent low resistance ZnO/Ag nanowire/ZnO composite electrode for thin film solar cells. ACS Nano 7, 1081-1091 (2013).
-
(2013)
ACS Nano
, vol.7
, pp. 1081-1091
-
-
Kim, A.1
-
27
-
-
84925637594
-
Dispersant-free conducting pastes for flexible and printed nanocarbon electrodes
-
DOI: 10.1038/ncomms3491
-
Han, J. T. et al. Dispersant-free conducting pastes for flexible and printed nanocarbon electrodes, Nature Commun. 4, 2491; DOI: 10.1038/ncomms3491 (2013).
-
(2013)
Nature Commun
, vol.4
, pp. 2491
-
-
Han, J.T.1
-
28
-
-
73649094787
-
Contact resistance between metal and carbon nanotube interconnects: Effect of work function and wettability
-
Lim, S. C. et al. Contact resistance between metal and carbon nanotube interconnects: Effect of work function and wettability. Appl. Phys. Lett. 95, 264103/1-3 (2009).
-
(2009)
Appl. Phys. Lett
, vol.95
-
-
Lim, S.C.1
-
29
-
-
84859991846
-
Self-passivation of transparent single-walled carbon nanotube films on plastic substrates by microwave-induced rapid nanowelding
-
Han, J. T. et al. Self-passivation of transparent single-walled carbon nanotube films on plastic substrates by microwave-induced rapid nanowelding. Appl. Phys. Lett. 100, 163120/1-4 (2013).
-
(2013)
Appl. Phys. Lett
, vol.100
-
-
Han, J.T.1
|