메뉴 건너뛰기




Volumn 1, Issue , 2010, Pages 309-315

Frequency adjusted multi-agent Q-learning

Author keywords

Evolutionary game theory; Multi agent learning; Q learning; Replicator dynamics

Indexed keywords

ADAPTIVE CONTROL SYSTEMS; AUTONOMOUS AGENTS; DYNAMICAL SYSTEMS; GAME THEORY; INTELLIGENT AGENTS; MULTI AGENT SYSTEMS;

EID: 84899425732     PISSN: 15488403     EISSN: 15582914     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (80)

References (23)
  • 3
    • 0031281590 scopus 로고    scopus 로고
    • Learning through reinforcement and replicator dynamics
    • November
    • T. Borgers and R. Sarin. Learning through reinforcement and replicator dynamics. Journal of Economic Theory, 77(1), November 1997.
    • (1997) Journal of Economic Theory , vol.77 , Issue.1
    • Borgers, T.1    Sarin, R.2
  • 5
    • 0036531878 scopus 로고    scopus 로고
    • Multiagent learning using a variable learning rate
    • Michael Bowling and Manuela Veloso. Multiagent learning using a variable learning rate. Artificial Intelligence, 136:215-250, 2002.
    • (2002) Artificial Intelligence , vol.136 , pp. 215-250
    • Bowling, M.1    Veloso, M.2
  • 6
    • 33947541888 scopus 로고    scopus 로고
    • Game theory, political economy, and the evolving study of war and peace
    • November
    • Bruce Bueno de Mesquita. Game theory, political economy, and the evolving study of war and peace. American Political Science Review, 100(4):637-642, November 2006.
    • (2006) American Political Science Review , vol.100 , Issue.4 , pp. 637-642
    • De Mesquita, B.B.1
  • 8
    • 84899869594 scopus 로고    scopus 로고
    • Modelling the dynamics of multiagent q-learning with f-greedy exploration (short paper)
    • Sierra Decker, Sichman and Castelfranchi, editors Budapest, Hungary, May 10-15
    • Eduardo Gomes and Ryszard Kowalczyk. Modelling the dynamics of multiagent q-learning with f-greedy exploration (short paper). In Sierra Decker, Sichman and Castelfranchi, editors, Proc. of 8th Int. Conf. on Autonomous Agents and Multiagent Systems (AAMAS 2009), pages 1181-1182, Budapest, Hungary, May 10-15, 2009.
    • (2009) Proc. of 8th Int. Conf. on Autonomous Agents and Multiagent Systems (AAMAS 2009) , pp. 1181-1182
    • Gomes, E.1    Kowalczyk, R.2
  • 15
    • 26444601262 scopus 로고    scopus 로고
    • Cooperative multi-agent learning: The state of the art
    • November
    • L. Panait and S. Luke. Cooperative multi-agent learning: The state of the art. Autonomous Agents and Multi-Agent Systems, 11(3):387-434, November 2005.
    • (2005) Autonomous Agents and Multi-Agent Systems , vol.11 , Issue.3 , pp. 387-434
    • Panait, L.1    Luke, S.2
  • 17
    • 34147161536 scopus 로고    scopus 로고
    • If multi-agent learning is the answer, what is the question?
    • Y. Shoham, R. Powers, and T. Grenager. If multi-agent learning is the answer, what is the question? Artificial Intelligence, 171(7):365-377, 2007.
    • (2007) Artificial Intelligence , vol.171 , Issue.7 , pp. 365-377
    • Shoham, Y.1    Powers, R.2    Grenager, T.3
  • 19
    • 0017819644 scopus 로고
    • Evolutionarily stable strategies and game dynamics
    • P. D. Taylor and L. Jonker. Evolutionarily stable strategies and game dynamics. Mathematical Biosciences, 40:145-156, 1978.
    • (1978) Mathematical Biosciences , vol.40 , pp. 145-156
    • Taylor, P.D.1    Jonker, L.2
  • 20
    • 34249064148 scopus 로고    scopus 로고
    • What evolutionary game theory tells us about multiagent learning
    • K. Tuyls and S. Parsons. What evolutionary game theory tells us about multiagent learning. Artificial Intelligence, 171(7):406-416, 2007.
    • (2007) Artificial Intelligence , vol.171 , Issue.7 , pp. 406-416
    • Tuyls, K.1    Parsons, S.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.