메뉴 건너뛰기




Volumn 8, Issue APR, 2014, Pages

Integrating neuroinformatics tools in TheVirtualBrain

Author keywords

Brain networks; Connectivity; Electroencephalography; Functional MRI; Magnetoencephalography; Neural mass; Python; Time delays

Indexed keywords

ALGORITHM; ARTICLE; ARTIFICIAL NEURAL NETWORK; COMPUTER PROGRAM; COMPUTER SIMULATION; CONCEPTUAL FRAMEWORK; DEFAULT MODE NETWORK; DYNAMICS; ELECTROENCEPHALOGRAPHY; FUNCTIONAL MAGNETIC RESONANCE IMAGING; MAGNETOENCEPHALOGRAPHY; MEDICAL INFORMATICS; NEUROIMAGING; NEUROLOGY; VIRTUAL BRAIN; WEB BROWSER;

EID: 84899134444     PISSN: None     EISSN: 16625196     Source Type: Journal    
DOI: 10.3389/fninf.2014.00036     Document Type: Article
Times cited : (26)

References (61)
  • 1
    • 0017713690 scopus 로고
    • Dynamics of pattern formation in lateral-inhibition type neural fields
    • doi: 10. 1007/BF00337259
    • Amari, S. (1977). Dynamics of pattern formation in lateral-inhibition type neural fields. Biol. Cybern. 22, 77-87. doi: 10. 1007/BF00337259.
    • (1977) Biol. Cybern , vol.22 , pp. 77-87
    • Amari, S.1
  • 2
    • 79958294666 scopus 로고    scopus 로고
    • Carmen: Code analysis, repository and modeling for e-neuroscience
    • doi: 10. 1016/j. procs. 2011. 04. 081
    • Austin, J., Jackson, T., Fletcher, M., Jessop, M., Liang, B., Weeks, M., et al. (2011). Carmen: code analysis, repository and modeling for e-neuroscience. Proc. Comput. Sci. 4, 768-777. doi: 10. 1016/j. procs. 2011. 04. 081.
    • (2011) Proc. Comput. Sci , vol.4 , pp. 768-777
    • Austin, J.1    Jackson, T.2    Fletcher, M.3    Jessop, M.4    Liang, B.5    Weeks, M.6
  • 3
    • 84863529550 scopus 로고    scopus 로고
    • Human cortical connectome reconstruction from diffusion weighted MRI: The effect of tractography algorithm
    • doi: 10. 1016/j. neuroimage. 2012. 06. 002
    • Bastiani, M., Shah, N. J., Goebel, R., and Roebroeck, A. (2012). Human cortical connectome reconstruction from diffusion weighted MRI: the effect of tractography algorithm. Neuroimage 62, 1732-1749. doi: 10. 1016/j. neuroimage. 2012. 06. 002.
    • (2012) Neuroimage , vol.62 , pp. 1732-1749
    • Bastiani, M.1    Shah, N.J.2    Goebel, R.3    Roebroeck, A.4
  • 4
    • 7044239641 scopus 로고    scopus 로고
    • Modeling the hemodynamic response to brain activation
    • doi: 10. 1016/j. neuroimage. 2004. 07. 013
    • Buxton, R. B., Uludag, K., Dubowitz, D. J., and Liu, T. T. (2004). Modeling the hemodynamic response to brain activation. Neuroimage 23, S220-S233. doi: 10. 1016/j. neuroimage. 2004. 07. 013.
    • (2004) Neuroimage , vol.23
    • Buxton, R.B.1    Uludag, K.2    Dubowitz, D.J.3    Liu, T.T.4
  • 5
    • 79956204167 scopus 로고    scopus 로고
    • Role of local network oscillations in resting-state functional connectivity
    • doi: 10. 1016/j. neuroimage. 2011. 04. 010
    • Cabral, J., Hugues, E., Sporns, O., and Deco, G. (2011). Role of local network oscillations in resting-state functional connectivity. Neuroimage 57, 130-139. doi: 10. 1016/j. neuroimage. 2011. 04. 010.
    • (2011) Neuroimage , vol.57 , pp. 130-139
    • Cabral, J.1    Hugues, E.2    Sporns, O.3    Deco, G.4
  • 6
    • 77954386847 scopus 로고    scopus 로고
    • Large-scale neural dynamics: Simple and complex
    • doi: 10. 1016/j. neuroimage. 2010. 01. 045
    • Coombes, S. (2010). Large-scale neural dynamics: simple and complex. Neuroimage 52, 731-739. doi: 10. 1016/j. neuroimage. 2010. 01. 045.
    • (2010) Neuroimage , vol.52 , pp. 731-739
    • Coombes, S.1
  • 8
    • 0345415009 scopus 로고    scopus 로고
    • A neural mass model for MEG/EEG: Coupling and neuronal dynamics
    • doi: 10. 1016/j. neuroimage. 2003. 07. 015
    • David, O., and Friston, K. J. (2003). A neural mass model for MEG/EEG: coupling and neuronal dynamics. Neuroimage 20, 1743-1755. doi: 10. 1016/j. neuroimage. 2003. 07. 015.
    • (2003) Neuroimage , vol.20 , pp. 1743-1755
    • David, O.1    Friston, K.J.2
  • 9
    • 33646145937 scopus 로고    scopus 로고
    • Dynamic causal modeling of evoked responses in EEG and MEG
    • doi: 10. 1016/j. neuroimage. 2005. 10. 045
    • David, O., Kiebel, S. J., Harrison, L. M., Mattout, J., Kilner, J. M., and Friston, K. J. (2006). Dynamic causal modeling of evoked responses in EEG and MEG. Neuroimage 30, 1255-1272. doi: 10. 1016/j. neuroimage. 2005. 10. 045.
    • (2006) Neuroimage , vol.30 , pp. 1255-1272
    • David, O.1    Kiebel, S.J.2    Harrison, L.M.3    Mattout, J.4    Kilner, J.M.5    Friston, K.J.6
  • 10
    • 0027345685 scopus 로고
    • Stochastical aspects of neuronal dynamics: Fokker-Planck approach
    • doi: 10. 1007/BF00226199
    • De Groff, D., Neelakanta, P. S., Sudhakar, R., and Aalo, V. (1993). Stochastical aspects of neuronal dynamics: Fokker-Planck approach. Biol. Cybern. 69, 155-164. doi: 10. 1007/BF00226199.
    • (1993) Biol. Cybern , vol.69 , pp. 155-164
    • De Groff, D.1    Neelakanta, P.S.2    Sudhakar, R.3    Aalo, V.4
  • 11
    • 78650339790 scopus 로고    scopus 로고
    • Emerging concepts for the dynamical organization of resting-state activity in the brain
    • doi: 10. 1038/nrn2961
    • Deco, G., Jirsa, V., and McIntosh, A. (2011). Emerging concepts for the dynamical organization of resting-state activity in the brain. Nat. Rev. Neurosci. 12, 43-56. doi: 10. 1038/nrn2961.
    • (2011) Nat. Rev. Neurosci , vol.12 , pp. 43-56
    • Deco, G.1    Jirsa, V.2    McIntosh, A.3
  • 12
    • 67649886440 scopus 로고    scopus 로고
    • Key role of coupling, delay, and noise in resting brain fluctuations
    • doi: 10. 1073/pnas. 0901831106
    • Deco, G., Jirsa, V., McIntosh, A., Sporns, O., and Kötter, R. (2009). Key role of coupling, delay, and noise in resting brain fluctuations. Proc. Natl. Acad. Sci. U. S. A. 106, 10302-10307. doi: 10. 1073/pnas. 0901831106.
    • (2009) Proc. Natl. Acad. Sci. U.S. A , vol.106 , pp. 10302-10307
    • Deco, G.1    Jirsa, V.2    McIntosh, A.3    Sporns, O.4    Kötter, R.5
  • 13
    • 50949089019 scopus 로고    scopus 로고
    • The dynamic brain: From spiking neurons to neural masses and cortical fields
    • doi: 10. 1371/journal. pcbi. 1000092
    • Deco, G., Jirsa, V., Robinson, P. A., Breakspear, M., and Friston, K. (2008). The dynamic brain: from spiking neurons to neural masses and cortical fields. PLoS Comput. Biol. 4: e1000092. doi: 10. 1371/journal. pcbi. 1000092.
    • (2008) PLoS Comput. Biol , vol.4
    • Deco, G.1    Jirsa, V.2    Robinson, P.A.3    Breakspear, M.4    Friston, K.5
  • 14
    • 84880452652 scopus 로고    scopus 로고
    • Resting-state functional connectivity emerges from structurally and dynamically shaped slow linear fluctuations
    • doi: 10. 1523/JNEUROSCI. 1091-13. 2013
    • Deco, G., Ponce-Alvarez, A., Mantini, D., Romani, G. L., Hagmann, P., and Corbetta, M. (2013). Resting-state functional connectivity emerges from structurally and dynamically shaped slow linear fluctuations. J. Neurosci. 33, 11239-11252. doi: 10. 1523/JNEUROSCI. 1091-13. 2013.
    • (2013) J. Neurosci , vol.33 , pp. 11239-11252
    • Deco, G.1    Ponce-Alvarez, A.2    Mantini, D.3    Romani, G.L.4    Hagmann, P.5    Corbetta, M.6
  • 15
    • 84866790204 scopus 로고    scopus 로고
    • How anatomy shapes dynamics: A semi-analytical study of the brain at rest by a simple spin model
    • doi: 10. 3389/fncom. 2012. 00068
    • Deco, G., Senden, M., and Jirsa, V. (2012). How anatomy shapes dynamics: a semi-analytical study of the brain at rest by a simple spin model. Front. Comput. Neurosci. 6: 68. doi: 10. 3389/fncom. 2012. 00068.
    • (2012) Front. Comput. Neurosci , vol.6 , pp. 68
    • Deco, G.1    Senden, M.2    Jirsa, V.3
  • 16
    • 84870209909 scopus 로고    scopus 로고
    • A large-scale model of the functioning brain
    • doi: 10. 1126/science. 1225266
    • Eliasmith, C., Stewart, T. C., Choo, X., Bekolay, T., DeWolf, T., Tang, C., et al. (2012). A large-scale model of the functioning brain. Science 338, 1202-1205. doi: 10. 1126/science. 1225266.
    • (2012) Science , vol.338 , pp. 1202-1205
    • Eliasmith, C.1    Stewart, T.C.2    Choo, X.3    Bekolay, T.4    DeWolf, T.5    Tang, C.6
  • 17
    • 85047672898 scopus 로고    scopus 로고
    • Dynamic field theory of movement preparation
    • doi: 10. 1037/0033-295X. 109. 3. 545
    • Erlhagen, W., and Schöner, G. (2002). Dynamic field theory of movement preparation. Psychol. Rev. 109: 545. doi: 10. 1037/0033-295X. 109. 3. 545.
    • (2002) Psychol. Rev , vol.109 , pp. 545
    • Erlhagen, W.1    Schöner, G.2
  • 18
  • 19
    • 0041924877 scopus 로고    scopus 로고
    • Dynamic causal modelling
    • doi: 10. 1016/S1053-8119(03)00202-7
    • Friston, K. J., Harrison, L., and Penny, W. (2003). Dynamic causal modelling. Neuroimage 19, 1273-1302. doi: 10. 1016/S1053-8119(03)00202-7.
    • (2003) Neuroimage , vol.19 , pp. 1273-1302
    • Friston, K.J.1    Harrison, L.2    Penny, W.3
  • 20
    • 0033630628 scopus 로고    scopus 로고
    • Population dynamics of spiking neurons: Fast transients, asynchronous states, and locking
    • doi: 10. 1162/089976600300015899
    • Gerstner, W. (2000). Population dynamics of spiking neurons: fast transients, asynchronous states, and locking. Neural Comput. 12, 43-89. doi: 10. 1162/089976600300015899.
    • (2000) Neural Comput , vol.12 , pp. 43-89
    • Gerstner, W.1
  • 21
    • 55449107481 scopus 로고    scopus 로고
    • Noise during rest enables the exploration of the brain's dynamic repertoire
    • doi: 10. 1371/journal. pcbi. 1000196
    • Ghosh, A., Rho, Y., McIntosh, A., Kötter, R., and Jirsa, V. (2008). Noise during rest enables the exploration of the brain's dynamic repertoire. PLoS Comput. Biol. 4: e1000196. doi: 10. 1371/journal. pcbi. 1000196.
    • (2008) PLoS Comput. Biol , vol.4
    • Ghosh, A.1    Rho, Y.2    McIntosh, A.3    Kötter, R.4    Jirsa, V.5
  • 22
    • 84892640984 scopus 로고    scopus 로고
    • The brian simulator
    • doi: 10. 3389/neuro. 01. 026. 2009
    • Goodman, D. F. M., and Brette, R. (2009). The brian simulator. Front. Neurosci. 3, 192-197. doi: 10. 3389/neuro. 01. 026. 2009.
    • (2009) Front. Neurosci , vol.3 , pp. 192-197
    • Goodman, D.F.M.1    Brette, R.2
  • 23
    • 84994026358 scopus 로고    scopus 로고
    • Nipype: A flexible, lightweight and extensible neuroimaging data processing framework in python
    • doi: 10. 3389/fninf. 2011. 00013
    • Gorgolewski, K., Burns, C. D., Madison, C., Clark, D., Halchenko, Y. O., Waskom, M. L., et al. (2011). Nipype: a flexible, lightweight and extensible neuroimaging data processing framework in python. Front. Neuroinform. 5: 13. doi: 10. 3389/fninf. 2011. 00013.
    • (2011) Front. Neuroinform , vol.5 , pp. 13
    • Gorgolewski, K.1    Burns, C.D.2    Madison, C.3    Clark, D.4    Halchenko, Y.O.5    Waskom, M.L.6
  • 24
    • 84891634715 scopus 로고    scopus 로고
    • MNE software for processing MEG and EEG data
    • doi: 10. 1016/j. neuroimage. 2013. 10. 027
    • Gramfort, A., Luessi, M., Larson, E., Engemann, D., Strohmeier, D., Brodbeck, C., et al. (2013). MNE software for processing MEG and EEG data. Neuroimage 86, 446-460. doi: 10. 1016/j. neuroimage. 2013. 10. 027.
    • (2013) Neuroimage , vol.86 , pp. 446-460
    • Gramfort, A.1    Luessi, M.2    Larson, E.3    Engemann, D.4    Strohmeier, D.5    Brodbeck, C.6
  • 25
    • 77956464128 scopus 로고    scopus 로고
    • Openmeeg: Opensource software for quasistatic bioelectromagnetics
    • doi: 10. 1186/1475-925X-9-45
    • Gramfort, A., Papadopoulo, T., Olivi, E., and Clerc, M. (2010). Openmeeg: opensource software for quasistatic bioelectromagnetics. Biomed. Eng. Online 9: 45. doi: 10. 1186/1475-925X-9-45.
    • (2010) Biomed. Eng. Online , vol.9 , pp. 45
    • Gramfort, A.1    Papadopoulo, T.2    Olivi, E.3    Clerc, M.4
  • 27
    • 48349097292 scopus 로고    scopus 로고
    • Mapping the structural core of human cerebral cortex
    • doi: 10. 1371/journal. pbio. 0060159
    • Hagmann, P., Cammoun, L., Gigandet, X., Meuli, R., Honey, C. J., Wedeen, V. J., et al. (2008). Mapping the structural core of human cerebral cortex. PLoS Biol. 6: e159. doi: 10. 1371/journal. pbio. 0060159.
    • (2008) PLoS Biol , vol.6
    • Hagmann, P.1    Cammoun, L.2    Gigandet, X.3    Meuli, R.4    Honey, C.J.5    Wedeen, V.J.6
  • 28
    • 0024615692 scopus 로고
    • Realistic conductivity geometry model of the human head for interpretation of neuromagnetic data
    • doi: 10. 1109/10. 16463
    • Hamalainen, M., and Sarvas, J. (1989). Realistic conductivity geometry model of the human head for interpretation of neuromagnetic data. IEEE Trans. Biomed. Eng. 36, 165-171. doi: 10. 1109/10. 16463.
    • (1989) IEEE Trans. Biomed. Eng , vol.36 , pp. 165-171
    • Hamalainen, M.1    Sarvas, J.2
  • 29
    • 53249137802 scopus 로고    scopus 로고
    • G-node: An integrated tool-sharing platform to support cellular and systems neurophysiology in the age of global neuroinformatics
    • doi: 10. 1016/j. neunet. 2008. 05. 011
    • Herz, A. V., Meier, R., Nawrot, M. P., Schiegel, W., and Zito, T. (2008). G-node: an integrated tool-sharing platform to support cellular and systems neurophysiology in the age of global neuroinformatics. Neural Netw. 21, 1070-1075. doi: 10. 1016/j. neunet. 2008. 05. 011.
    • (2008) Neural Netw , vol.21 , pp. 1070-1075
    • Herz, A.V.1    Meier, R.2    Nawrot, M.P.3    Schiegel, W.4    Zito, T.5
  • 30
    • 0035080096 scopus 로고    scopus 로고
    • Neuron: A tool for neuroscientists
    • doi: 10. 1177/107385840100700207
    • Hines, M. L., and Carnevale, N. T. (2001). Neuron: a tool for neuroscientists. Neuroscientist 7, 123-135. doi: 10. 1177/107385840100700207.
    • (2001) Neuroscientist , vol.7 , pp. 123-135
    • Hines, M.L.1    Carnevale, N.T.2
  • 31
    • 60549089357 scopus 로고    scopus 로고
    • Predicting human resting-state functional connectivity from structural connectivity
    • doi: 10. 1073/pnas. 0811168106
    • Honey, C. J., Sporns, O., Cammoun, L., Gigandet, X., Thiran, J. P., Meuli, R., et al. (2009). Predicting human resting-state functional connectivity from structural connectivity. Proc. Natl. Acad. Sci. U. S. A. 106, 2035-2040. doi: 10. 1073/pnas. 0811168106.
    • (2009) Proc. Natl. Acad. Sci. U.S. A , vol.106 , pp. 2035-2040
    • Honey, C.J.1    Sporns, O.2    Cammoun, L.3    Gigandet, X.4    Thiran, J.P.5    Meuli, R.6
  • 32
    • 0029374946 scopus 로고
    • Electroencephalogram and visual evoked potential generation in a mathematical model of coupled cortical columns
    • doi: 10. 1007/BF00199471
    • Jansen, B., and Rit, V. (1995). Electroencephalogram and visual evoked potential generation in a mathematical model of coupled cortical columns. Biol. Cybern. 73, 357-366. doi: 10. 1007/BF00199471.
    • (1995) Biol. Cybern , vol.73 , pp. 357-366
    • Jansen, B.1    Rit, V.2
  • 33
    • 0030786828 scopus 로고    scopus 로고
    • A derivation of a macroscopic field theory of the brain from the quasi-microscopic neural dynamics
    • doi: 10. 1016/S0167-2789(96)00166-2
    • Jirsa, V., and Haken, H. (1997). A derivation of a macroscopic field theory of the brain from the quasi-microscopic neural dynamics. Physica D 99, 503-526. doi: 10. 1016/S0167-2789(96)00166-2.
    • (1997) Physica D , vol.99 , pp. 503-526
    • Jirsa, V.1    Haken, H.2
  • 34
    • 0036557911 scopus 로고    scopus 로고
    • Spatiotemporal forward solution of the EEG and meg using network modeling
    • doi: 10. 1109/TMI. 2002. 1009385
    • Jirsa, V., Jantzen, K., Fuchs, A., and Kelso, J. (2002). Spatiotemporal forward solution of the EEG and meg using network modeling. IEEE Trans. Med. Imag. 21, 493-504. doi: 10. 1109/TMI. 2002. 1009385.
    • (2002) IEEE Trans. Med. Imag , vol.21 , pp. 493-504
    • Jirsa, V.1    Jantzen, K.2    Fuchs, A.3    Kelso, J.4
  • 35
    • 0000456175 scopus 로고    scopus 로고
    • Field theory of electromagnetic brain activity
    • doi: 10. 1103/PhysRevLett. 77. 960
    • Jirsa, V. K., and Haken, H. (1996). Field theory of electromagnetic brain activity. Phys. Rev. Lett. 77, 960-963. doi: 10. 1103/PhysRevLett. 77. 960.
    • (1996) Phys. Rev. Lett , vol.77 , pp. 960-963
    • Jirsa, V.K.1    Haken, H.2
  • 37
    • 84855873504 scopus 로고    scopus 로고
    • Pycuda and pyopencl: A scripting-based approach to GPU run-time code generation
    • doi: 10. 1016/j. parco. 2011. 09. 001
    • Klöckner, A., Pinto, N., Lee, Y., Catanzaro, B., Ivanov, P., and Fasih, A. (2012). Pycuda and pyopencl: a scripting-based approach to GPU run-time code generation. Parallel Comput. 38, 157-174. doi: 10. 1016/j. parco. 2011. 09. 001.
    • (2012) Parallel Comput , vol.38 , pp. 157-174
    • Klöckner, A.1    Pinto, N.2    Lee, Y.3    Catanzaro, B.4    Ivanov, P.5    Fasih, A.6
  • 38
    • 0034153464 scopus 로고    scopus 로고
    • Dynamics of encoding in neuron populations: Some general mathematical features
    • doi: 10. 1162/089976600300015673
    • Knight, B. W. (2000). Dynamics of encoding in neuron populations: some general mathematical features. Neural Comput. 12, 473-518. doi: 10. 1162/089976600300015673.
    • (2000) Neural Comput , vol.12 , pp. 473-518
    • Knight, B.W.1
  • 39
    • 6344245918 scopus 로고    scopus 로고
    • Online retrieval, processing, and visualization of primate connectivity data from the cocomac database
    • doi: 10. 1385/NI: 2: 2: 127
    • Kötter, R. (2004). Online retrieval, processing, and visualization of primate connectivity data from the cocomac database. Neuroinformatics 2, 127-144. doi: 10. 1385/NI: 2: 2: 127.
    • (2004) Neuroinformatics , vol.2 , pp. 127-144
    • Kötter, R.1
  • 40
    • 0000856704 scopus 로고
    • Self-entralnment of a population of coupled non-llnear oscillators, chapter 52
    • in, (New York, NY: Springer), doi: 10. 1007/BFb0013365
    • Kuramoto, Y. (1975). "Self-entralnment of a population of coupled non-llnear oscillators, chapter 52, " in Lectures on Physics: International Symposium on Mathematical Problems in Theoretical Physics, Vol. 39 (New York, NY: Springer), 420. doi: 10. 1007/BFb0013365.
    • (1975) Lectures on Physics: International Symposium on Mathematical Problems in Theoretical Physics , vol.39 , pp. 420
    • Kuramoto, Y.1
  • 41
    • 0042214287 scopus 로고    scopus 로고
    • Alpha rhythm emerges from large-scale networks of realistically coupled multicompartmental model cortical neurons
    • Liley, D. T., Alexander, D. M., Wright, J. J., and Aldous, M. D. (1999). Alpha rhythm emerges from large-scale networks of realistically coupled multicompartmental model cortical neurons. Network 10, 79-92.
    • (1999) Network , vol.10 , pp. 79-92
    • Liley, D.T.1    Alexander, D.M.2    Wright, J.J.3    Aldous, M.D.4
  • 42
    • 0036870950 scopus 로고    scopus 로고
    • Integration of stochastic differential equations on a computer
    • doi: 10. 1142/S0129183102004042
    • Mannella, R. (2002). Integration of stochastic differential equations on a computer. Int. J. Modern Phys. C 13, 1177-1194. doi: 10. 1142/S0129183102004042.
    • (2002) Int. J. Modern Phys. C , vol.13 , pp. 1177-1194
    • Mannella, R.1
  • 43
    • 25344463461 scopus 로고
    • Fast and precise algorithm for computer simulation of stochastic differential equations
    • doi: 10. 1103/PhysRevA. 40. 3381
    • Mannella, R., and Palleschi, V. (1989). Fast and precise algorithm for computer simulation of stochastic differential equations. Phys. Rev. A 40: 3381. doi: 10. 1103/PhysRevA. 40. 3381.
    • (1989) Phys. Rev. A , vol.40 , pp. 3381
    • Mannella, R.1    Palleschi, V.2
  • 44
    • 0023400739 scopus 로고
    • The discrete geodesic problem
    • doi: 10. 1137/0216045
    • Mitchell, J. S., Mount, D. M., and Papadimitriou, C. H. (1987). The discrete geodesic problem. SIAM J. Comput. 16, 647-668. doi: 10. 1137/0216045.
    • (1987) SIAM J. Comput , vol.16 , pp. 647-668
    • Mitchell, J.S.1    Mount, D.M.2    Papadimitriou, C.H.3
  • 45
    • 0344898323 scopus 로고    scopus 로고
    • The magnetic lead field theorem in the quasi-static approximation and its use for magnetoencephalography forward calculation in realistic volume conductors
    • doi: 10. 1088/0031-9155/48/22/002
    • Nolte, G. (2003). The magnetic lead field theorem in the quasi-static approximation and its use for magnetoencephalography forward calculation in realistic volume conductors. Phys. Med. Biol. 48, 3637-3652. doi: 10. 1088/0031-9155/48/22/002.
    • (2003) Phys. Med. Biol , vol.48 , pp. 3637-3652
    • Nolte, G.1
  • 46
    • 0034083940 scopus 로고    scopus 로고
    • On the simulation of large populations of neurons
    • doi: 10. 1023/A: 1008964915724
    • Omurtag, A., Knight, B. W., and Sirovich, L. (2000). On the simulation of large populations of neurons. J. Comput. Neurosci. 8, 51-63. doi: 10. 1023/A: 1008964915724.
    • (2000) J. Comput. Neurosci , vol.8 , pp. 51-63
    • Omurtag, A.1    Knight, B.W.2    Sirovich, L.3
  • 47
    • 34247481878 scopus 로고    scopus 로고
    • IPython: A system for interactive scientific computing
    • doi: 10. 1109/MCSE. 2007. 53
    • Pérez, F., and Granger, B. E. (2007). IPython: a system for interactive scientific computing. Comput. Sci. Eng. 9, 21-29. doi: 10. 1109/MCSE. 2007. 53.
    • (2007) Comput. Sci. Eng , vol.9 , pp. 21-29
    • Pérez, F.1    Granger, B.E.2
  • 49
    • 77954385460 scopus 로고    scopus 로고
    • Complex network measures of brain connectivity: Uses and interpretations
    • doi: 10. 1016/j. neuroimage. 2009. 10. 003
    • Rubinov, M., and Sporns, O. (2010). Complex network measures of brain connectivity: uses and interpretations. Neuroimage 52, 1059-1069. doi: 10. 1016/j. neuroimage. 2009. 10. 003.
    • (2010) Neuroimage , vol.52 , pp. 1059-1069
    • Rubinov, M.1    Sporns, O.2
  • 50
    • 84887346193 scopus 로고    scopus 로고
    • The virtual brain: A simulator of primate brain network dynamics
    • doi: 10. 3389/fninf. 2013. 00010
    • Sanz-Leon, P., Knock, S. A., Woodman, M. M., Domide, L., Mersmann, J., McIntosh, A. R., et al. (2013). The virtual brain: a simulator of primate brain network dynamics. Front. Neuroinform. 7: 10. doi: 10. 3389/fninf. 2013. 00010.
    • (2013) Front. Neuroinform , vol.7 , pp. 10
    • Sanz-Leon, P.1    Knock, S.A.2    Woodman, M.M.3    Domide, L.4    Mersmann, J.5    McIntosh, A.R.6
  • 51
    • 0023158840 scopus 로고
    • Basic mathematical and electromagnetic concepts of the biomagnetic inverse problems
    • doi: 10. 1088/0031-9155/32/1/004
    • Sarvas, J. (1987). Basic mathematical and electromagnetic concepts of the biomagnetic inverse problems. Phys. Med. Biol. 32, 11-22. doi: 10. 1088/0031-9155/32/1/004.
    • (1987) Phys. Med. Biol , vol.32 , pp. 11-22
    • Sarvas, J.1
  • 52
    • 84881490308 scopus 로고    scopus 로고
    • Systematic approximations of neural fields through networks of neural masses in the virtual brain
    • doi: 10. 1016/j. neuroimage. 2013. 06. 018
    • Spiegler, A., and Jirsa, V. (2013). Systematic approximations of neural fields through networks of neural masses in the virtual brain. Neuroimage 83C, 704-725. doi: 10. 1016/j. neuroimage. 2013. 06. 018.
    • (2013) Neuroimage , vol.83 C , pp. 704-725
    • Spiegler, A.1    Jirsa, V.2
  • 53
    • 77954384802 scopus 로고    scopus 로고
    • Bifurcation analysis of neural mass models: Impact of extrinsic inputs and dendritic time constants
    • doi: 10. 1016/j. neuroimage. 2009. 12. 081
    • Spiegler, A., Kiebel, S. J., Atay, F. M., and Knösche, T. R. (2010). Bifurcation analysis of neural mass models: impact of extrinsic inputs and dendritic time constants. Neuroimage 52, 1041-1058. doi: 10. 1016/j. neuroimage. 2009. 12. 081.
    • (2010) Neuroimage , vol.52 , pp. 1041-1058
    • Spiegler, A.1    Kiebel, S.J.2    Atay, F.M.3    Knösche, T.R.4
  • 54
    • 57149111292 scopus 로고    scopus 로고
    • A low dimensional description of globally coupled heterogeneous neural networks of excitatory and inhibitory
    • doi: 10. 1371/journal. pcbi. 1000219
    • Stefanescu, R., and Jirsa, V. (2008). A low dimensional description of globally coupled heterogeneous neural networks of excitatory and inhibitory. PLoS Comput. Biol. 4, 26-36. doi: 10. 1371/journal. pcbi. 1000219.
    • (2008) PLoS Comput. Biol , vol.4 , pp. 26-36
    • Stefanescu, R.1    Jirsa, V.2
  • 55
    • 79952524603 scopus 로고    scopus 로고
    • Reduced representations of heterogeneous mixed neural networks with synaptic coupling
    • doi: 10. 1103/PhysRevE. 83. 026204
    • Stefanescu, R., and Jirsa, V. (2011). Reduced representations of heterogeneous mixed neural networks with synaptic coupling. Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 83: 026204. doi: 10. 1103/PhysRevE. 83. 026204.
    • (2011) Phys. Rev. E Stat. Nonlin. Soft Matter Phys , vol.83 , pp. 026204
    • Stefanescu, R.1    Jirsa, V.2
  • 56
    • 0033486940 scopus 로고    scopus 로고
    • Theoretical electroencephalogram stationary spectrum for a white-noise-driven cortex: Evidence for a general anesthetic-induced phase transition
    • doi: 10. 1103/PhysRevE. 60. 7299
    • Steyn-Ross, M. L., Steyn-Ross, D. A., Sleigh, J. W., and Liley, D. T. (1999). Theoretical electroencephalogram stationary spectrum for a white-noise-driven cortex: evidence for a general anesthetic-induced phase transition. Phys. Rev. E Stat. Phys. Plasmas. Fluids Relat. Interdiscip. Top. 60, 7299-7311. doi: 10. 1103/PhysRevE. 60. 7299.
    • (1999) Phys. Rev. E Stat. Phys. Plasmas. Fluids Relat. Interdiscip. Top , vol.60 , pp. 7299-7311
    • Steyn-Ross, M.L.1    Steyn-Ross, D.A.2    Sleigh, J.W.3    Liley, D.T.4
  • 58
    • 0015260274 scopus 로고
    • Excitatory and inhibitory interactions in localized populations of model neurons
    • doi: 10. 1016/S0006-3495(72)86068-5
    • Wilson, H., and Cowan, J. (1972). Excitatory and inhibitory interactions in localized populations of model neurons. Biophys. J. 12, 1-24. doi: 10. 1016/S0006-3495(72)86068-5.
    • (1972) Biophys. J , vol.12 , pp. 1-24
    • Wilson, H.1    Cowan, J.2
  • 59
    • 0015868589 scopus 로고
    • A mathematical theory of the functional dynamics of cortical and thalamic nervous tissue
    • doi: 10. 1007/BF00288786
    • Wilson, H., and Cowan, J. (1973). A mathematical theory of the functional dynamics of cortical and thalamic nervous tissue. Kybernetik 13, 55-80. doi: 10. 1007/BF00288786.
    • (1973) Kybernetik , vol.13 , pp. 55-80
    • Wilson, H.1    Cowan, J.2
  • 60
    • 32544439341 scopus 로고    scopus 로고
    • A recurrent network mechanism of time integration in perceptual decisions
    • doi: 10. 1523/JNEUROSCI. 3733-05. 2006
    • Wong, K.-F., and Wang, X.-J. (2006). A recurrent network mechanism of time integration in perceptual decisions. J. Neurosci. 26, 1314-1328. doi: 10. 1523/JNEUROSCI. 3733-05. 2006.
    • (2006) J. Neurosci , vol.26 , pp. 1314-1328
    • Wong, K.-F.1    Wang, X.-J.2
  • 61
    • 0018134945 scopus 로고
    • Performance of a model for a local neuron population
    • doi: 10. 1007/BF00337367
    • Zetterberg, L. H., Kristiansson, L., and Mossberg, K. (1978). Performance of a model for a local neuron population. Biol. Cybern. 31, 15-26. doi: 10. 1007/BF00337367.
    • (1978) Biol. Cybern , vol.31 , pp. 15-26
    • Zetterberg, L.H.1    Kristiansson, L.2    Mossberg, K.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.