메뉴 건너뛰기




Volumn , Issue , 2013, Pages

Polar operators for structured sparse estimation

Author keywords

[No Author keywords available]

Indexed keywords

ESTIMATION; GRADIENT METHODS; OPTIMIZATION;

EID: 84898938729     PISSN: 10495258     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (7)

References (32)
  • 3
    • 84855392809 scopus 로고    scopus 로고
    • Learning with structured sparsity
    • J. Huang, T. Zhang, and D. Metaxas. Learning with structured sparsity. JMLR, 12:3371-3412, 2011.
    • (2011) JMLR , vol.12 , pp. 3371-3412
    • Huang, J.1    Zhang, T.2    Metaxas, D.3
  • 4
    • 77956548668 scopus 로고    scopus 로고
    • Tree-guided group lasso for multi-task regression with structured sparsity
    • S. Kim and E. Xing. Tree-guided group lasso for multi-task regression with structured sparsity. In ICML, 2010.
    • (2010) ICML
    • Kim, S.1    Xing, E.2
  • 5
    • 80052234083 scopus 로고    scopus 로고
    • Proximal methods for hierarchical sparse coding
    • R. Jenatton, J. Mairal, G. Obozinski, and F. Bach. Proximal methods for hierarchical sparse coding. JMLR, 12:2297-2334, 2011.
    • (2011) JMLR , vol.12 , pp. 2297-2334
    • Jenatton, R.1    Mairal, J.2    Obozinski, G.3    Bach, F.4
  • 7
    • 69949155103 scopus 로고    scopus 로고
    • The composite absolute penalties family for grouped and hierarchical variable selection
    • P. Zhao, G. Rocha, and B. Yu. The composite absolute penalties family for grouped and hierarchical variable selection. Annals of Statistics, 37(6A):3468-3497, 2009.
    • (2009) Annals of Statistics , vol.37 , Issue.6 A , pp. 3468-3497
    • Zhao, P.1    Rocha, G.2    Yu, B.3
  • 9
    • 85014561619 scopus 로고    scopus 로고
    • A fast iterative shrinkage-thresholding algorithm for linear inverse problems
    • A. Beck and M. Teboulle. A fast iterative shrinkage-thresholding algorithm for linear inverse problems. SIAM Journal on Imaging Sciences, 2(1):183-202, 2009.
    • (2009) SIAM Journal on Imaging Sciences , vol.2 , Issue.1 , pp. 183-202
    • Beck, A.1    Teboulle, M.2
  • 10
    • 84879800501 scopus 로고    scopus 로고
    • Gradient methods for minimizing composite functions
    • Y. Nesterov. Gradient methods for minimizing composite functions. Mathematical Programming, 140: 125-161, 2013.
    • (2013) Mathematical Programming , vol.140 , pp. 125-161
    • Nesterov, Y.1
  • 11
    • 80555129671 scopus 로고    scopus 로고
    • Convex and network flow optimization for structured sparsity
    • J. Mairal, R. Jenatton, G. Obozinski, and F. Bach. Convex and network flow optimization for structured sparsity. JMLR, 12:2681-2720, 2011.
    • (2011) JMLR , vol.12 , pp. 2681-2720
    • Mairal, J.1    Jenatton, R.2    Obozinski, G.3    Bach, F.4
  • 12
    • 84885632749 scopus 로고    scopus 로고
    • Supervised feature selection in graphs with path coding penalties and network flows
    • J. Mairal and B. Yu. Supervised feature selection in graphs with path coding penalties and network flows. JMLR, 14:2449-2485, 2013.
    • (2013) JMLR , vol.14 , pp. 2449-2485
    • Mairal, J.1    Yu, B.2
  • 13
    • 84866721491 scopus 로고    scopus 로고
    • Lifted coordinate descent for learning with trace-norm regularizations
    • M. Dudik, Z. Harchaoui, and J. Malick. Lifted coordinate descent for learning with trace-norm regularizations. In AISTATS, 2012.
    • (2012) AISTATS
    • Dudik, M.1    Harchaoui, Z.2    Malick, J.3
  • 14
    • 84877780790 scopus 로고    scopus 로고
    • Accelerated training for matrix-norm regularization: A boosting approach
    • X. Zhang, Y. Yu, and D. Schuurmans. Accelerated training for matrix-norm regularization: A boosting approach. In NIPS, 2012.
    • (2012) NIPS
    • Zhang, X.1    Yu, Y.2    Schuurmans, D.3
  • 15
    • 84867122544 scopus 로고    scopus 로고
    • A hybrid algorithm for convex semidefinite optimization
    • S. Laue. A hybrid algorithm for convex semidefinite optimization. In ICML, 2012.
    • (2012) ICML
    • Laue, S.1
  • 17
    • 17444406259 scopus 로고    scopus 로고
    • Smooth minimization of non-smooth functions
    • Y. Nesterov. Smooth minimization of non-smooth functions. Mathematical Programming, 103(1):127-152, 2005.
    • (2005) Mathematical Programming , vol.103 , Issue.1 , pp. 127-152
    • Nesterov, Y.1
  • 18
    • 80052701674 scopus 로고    scopus 로고
    • A fused lasso latent feature model for analyzing multi-sample aCGH data
    • G. Nowak, T. Hastie, J. R. Pollack, and R. Tibshirani. A fused lasso latent feature model for analyzing multi-sample aCGH data. Biostatistics, 12(4):776-791, 2011.
    • (2011) Biostatistics , vol.12 , Issue.4 , pp. 776-791
    • Nowak, G.1    Hastie, T.2    Pollack, J.R.3    Tibshirani, R.4
  • 21
    • 84860614887 scopus 로고    scopus 로고
    • Convex analysis and optimization with submodular functions: A tutorial
    • F. Bach. Convex analysis and optimization with submodular functions: a tutorial. Technical Report HAL 00527714, 2010.
    • (2010) Technical Report HAL 00527714
    • Bach, F.1
  • 22
    • 0000181889 scopus 로고
    • On nonlinear fractional programming
    • W. Dinkelbach. On nonlinear fractional programming. Management Science, 13(7), 1967.
    • (1967) Management Science , vol.13 , Issue.7
    • Dinkelbach, W.1
  • 28
    • 84898978654 scopus 로고    scopus 로고
    • URL http://www.gems-system.or.
  • 29
    • 84898975285 scopus 로고    scopus 로고
    • URL http://spams-devel.gforge.inria.fr.
  • 30
    • 84898960099 scopus 로고    scopus 로고
    • URL http://drwn.anu.edu.au/index.html.
  • 31
    • 0037137519 scopus 로고    scopus 로고
    • A gene-expression signature as a predictor of survival in breast cancer
    • M. Van De Vijver et al. A gene-expression signature as a predictor of survival in breast cancer. The New England Journal of Medicine, 347(25):1999-2009, 2002.
    • (2002) The New England Journal of Medicine , vol.347 , Issue.25 , pp. 1999-2009
    • Van De Vijver, M.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.