메뉴 건너뛰기




Volumn WS-13-12, Issue , 2013, Pages 9-15

Symbol acquisition for task-level planning

Author keywords

[No Author keywords available]

Indexed keywords

ABSTRACT REPRESENTATION; CONTINUOUS STATE SPACE; REINFORCEMENT LEARNING AGENT; SYMBOLIC REPRESENTATION;

EID: 84898878959     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (4)

References (38)
  • 1
    • 72949110318 scopus 로고    scopus 로고
    • Learning partially observable deterministic action models
    • Amir, E., and Chang, A. 2008. Learning partially observable deterministic action models. Journal of Artificial Intelligence Research 33:349-402.
    • (2008) Journal of Artificial Intelligence Research , vol.33 , pp. 349-402
    • Amir, E.1    Chang, A.2
  • 2
    • 0141988716 scopus 로고    scopus 로고
    • Recent advances in hierarchical reinforcement learning
    • Barto, A., and Mahadevan, S. 2003. Recent advances in hierarchical reinforcement learning. Discrete Event Dynamic Systems 13:41-77.
    • (2003) Discrete Event Dynamic Systems , vol.13 , pp. 41-77
    • Barto, A.1    Mahadevan, S.2
  • 4
    • 58149352777 scopus 로고    scopus 로고
    • A hybrid approach to intricate motion, manipulation and task planning
    • Cambon, S.; Alami, R.; and Gravot, F. 2009. A hybrid approach to intricate motion, manipulation and task planning. International Journal of Robotics Research 28(1):104-126.
    • (2009) International Journal of Robotics Research , vol.28 , Issue.1 , pp. 104-126
    • Cambon, S.1    Alami, R.2    Gravot, F.3
  • 9
    • 0035312760 scopus 로고    scopus 로고
    • Relational reinforcement learning
    • DOI 10.1023/A:1007694015589
    • Džeroski, S.; De Raedt, L.; and Driessens, K. 2001. Relational reinforcement learning. Machine learning 43(1):7-52. (Pubitemid 32286614)
    • (2001) Machine Learning , vol.43 , Issue.1-2 , pp. 7-52
    • Dzeroski, S.1    De Raedt, L.2    Driessens, K.3
  • 10
    • 2842560201 scopus 로고
    • STRIPS: A new approach to the application of theorem proving to problem solving
    • Fikes, R., and Nilsson, N. 1971. STRIPS: a new approach to the application of theorem proving to problem solving. Artificial Intelligence 2:189-208.
    • (1971) Artificial Intelligence , vol.2 , pp. 189-208
    • Fikes, R.1    Nilsson, N.2
  • 19
    • 80055032021 scopus 로고    scopus 로고
    • Skill discovery in continuous reinforcement learning domains using skill chaining
    • Konidaris, G., and Barto, A. 2009b. Skill discovery in continuous reinforcement learning domains using skill chaining. In Advances in Neural Information Processing Systems 22, 1015-1023.
    • (2009) Advances in Neural Information Processing Systems , vol.22 , pp. 1015-1023
    • Konidaris, G.1    Barto, A.2
  • 21
    • 84873447300 scopus 로고    scopus 로고
    • Exploration in relational domains for model-based reinforcement learning
    • Lang, T.; Toussaint, M.; and Kersting, K. 2012. Exploration in relational domains for model-based reinforcement learning. Journal of Machine Learning Research 13:3691-3734.
    • (2012) Journal of Machine Learning Research , vol.13 , pp. 3691-3734
    • Lang, T.1    Toussaint, M.2    Kersting, K.3
  • 23
    • 0025448824 scopus 로고
    • Symbol grounding via a hybrid architecture in an autonomous assembly system
    • Malcolm, C., and Smithers, T. 1990. Symbol grounding via a hybrid architecture in an autonomous assembly system. Robotics and Autonomous Systems 6(1-2): 123-144. (Pubitemid 20698149)
    • (1990) Robotics Amsterdam , vol.6 , Issue.1-2 , pp. 123-144
    • Malcolm, C.1    Smithers, T.2
  • 24
    • 53849088531 scopus 로고    scopus 로고
    • The initial development of object knowledge by a learning robot
    • Modayil, J., and Kuipers, B. 2008. The initial development of object knowledge by a learning robot. Robotics and Autonomous Systems 56(11):879-890.
    • (2008) Robotics and Autonomous Systems , vol.56 , Issue.11 , pp. 879-890
    • Modayil, J.1    Kuipers, B.2
  • 26
    • 84858634841 scopus 로고    scopus 로고
    • Autonomous learning of high-level states and actions in continuous environments
    • Mugan, J., and Kuipers, B. 2012. Autonomous learning of high-level states and actions in continuous environments. IEEE Transactions on Autonomous Mental Development 4(1):70-86.
    • (2012) IEEE Transactions on Autonomous Mental Development , vol.4 , Issue.1 , pp. 70-86
    • Mugan, J.1    Kuipers, B.2
  • 29
    • 0004186069 scopus 로고
    • Technical report, SRI International
    • Nilsson, N. 1984. Shakey the robot. Technical report, SRI International.
    • (1984) Shakey the Robot
    • Nilsson, N.1
  • 32
    • 0003392384 scopus 로고    scopus 로고
    • Ph.D. Dissertation, Department of Computer Science, University of Massachusetts Amherst
    • Precup, D. 2000. Temporal Abstraction in Reinforcement Learning. Ph.D. Dissertation, Department of Computer Science, University of Massachusetts Amherst.
    • (2000) Temporal Abstraction in Reinforcement Learning
    • Precup, D.1
  • 36
    • 0033170372 scopus 로고    scopus 로고
    • Between MDPs and semi-MDPs: A framework for temporal abstraction in reinforcement learning
    • DOI 10.1016/S0004-3702(99)00052-1
    • Sutton, R.; Precup, D.; and Singh, S. 1999. Between MDPs and semi-MDPs: A framework for temporal abstraction in reinforcement learning. Artificial Intelligence 112(1-2):181-211. (Pubitemid 32079890)
    • (1999) Artificial Intelligence , vol.112 , Issue.1 , pp. 181-211
    • Sutton, R.S.1    Precup, D.2    Singh, S.3
  • 37
    • 77957761338 scopus 로고    scopus 로고
    • LQR-Trees: Feedback motion planning on sparse randomized trees
    • Tedrake, R. 2009. LQR-Trees: Feedback motion planning on sparse randomized trees. In Proceedings of Robotics: Science and Systems, 18-24.
    • (2009) Proceedings of Robotics: Science and Systems , pp. 18-24
    • Tedrake, R.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.