메뉴 건너뛰기




Volumn 42, Issue 2, 2014, Pages 233-254

Semantic subgroup explanations

Author keywords

Data mining; Microarray data; Ontologies; Semantic data mining; Subgroup discovery

Indexed keywords

GENE EXPRESSION; ONTOLOGY; SEMANTICS;

EID: 84898814667     PISSN: 09259902     EISSN: 15737675     Source Type: Journal    
DOI: 10.1007/s10844-013-0292-1     Document Type: Article
Times cited : (15)

References (40)
  • 1
    • 84897688795 scopus 로고    scopus 로고
    • Discovering characterizations of the behavior of anomalous subpopulations
    • 10.1109/TKDE.2012.58 10.1109/TKDE.2012.58
    • Angiulli, F.; Fassetti, F.; Palopoli, L. (2013). Discovering characterizations of the behavior of anomalous subpopulations. IEEE Transactions on Knowledge and Data Engineering, 25(6), 1280-1292. doi: 10.1109/TKDE.2012.58.
    • (2013) IEEE Transactions on Knowledge and Data Engineering , vol.25 , Issue.6 , pp. 1280-1292
    • Angiulli, F.1    Fassetti, F.2    Palopoli, L.3
  • 3
    • 23044527560 scopus 로고    scopus 로고
    • Detecting group differences: Mining contrast sets
    • 10.1023/A:1011429418057 0982.68048
    • Bay, S.D.; Pazzani, M.J. (2001). Detecting group differences: mining contrast sets. Data Mining and Knowledge Discovery, 5(3), 213-246.
    • (2001) Data Mining and Knowledge Discovery , vol.5 , Issue.3 , pp. 213-246
    • Bay, S.D.1    Pazzani, M.J.2
  • 6
    • 0026072872 scopus 로고
    • Pathological prognostic factors in breast cancer. I the value of histological grade in breast cancer: Experience from a large study with long-term follow-up
    • 10.1111/j.1365-2559.1991.tb00229.x
    • Elston, C.W.; Ellis, I.O. (1991). Pathological prognostic factors in breast cancer. I. The value of histological grade in breast cancer: experience from a large study with long-term follow-up. Histopathology, 19(5), 403-410.
    • (1991) Histopathology , vol.19 , Issue.5 , pp. 403-410
    • Elston, C.W.1    Ellis, I.O.2
  • 7
    • 84861801113 scopus 로고    scopus 로고
    • Biomine: Predicting links between biological entities using network models of heterogeneous databases
    • 10.1186/1471-2105-13-119
    • Eronen, L.; Toivonen, H. (2012). Biomine: predicting links between biological entities using network models of heterogeneous databases. BMC Bioinformatics, 13, 119.
    • (2012) BMC Bioinformatics , vol.13 , pp. 119
    • Eronen, L.1    Toivonen, H.2
  • 10
    • 0038500689 scopus 로고    scopus 로고
    • Active subgroup mining: A case study in coronary heart disease risk group detection
    • 10.1016/S0933-3657(03)00034-4
    • Gamberger, D.; Lavrač, N. (2003). Active subgroup mining: a case study in coronary heart disease risk group detection. Artificial Intelligence in Medicine, 28(1), 27-57.
    • (2003) Artificial Intelligence in Medicine , vol.28 , Issue.1 , pp. 27-57
    • Gamberger, D.1    Lavrač, N.2
  • 13
    • 84857462987 scopus 로고    scopus 로고
    • P. Brazdil, & A. Jorge (Eds.), EPIA, lecture notes in computer science Berlin Heidelberg: Springer
    • Jovanoski, V.; Lavrač, N. (2001). Classification rule learning with APRIORI-C. In P. Brazdil, & A. Jorge (Eds.), EPIA, lecture notes in computer science (Vol. 2258, pp. 44-51). Berlin Heidelberg: Springer.
    • (2001) Classification Rule Learning with APRIORI-C , vol.2258 , pp. 44-51
    • Jovanoski, V.1    Lavrač, N.2
  • 14
    • 33747881454 scopus 로고    scopus 로고
    • APRIORI-SD: Adapting association rule learning to subgroup discovery
    • 10.1080/08839510600779688
    • Kavšek, B.; Lavrač, N. (2006). APRIORI-SD: adapting association rule learning to subgroup discovery. Applied Artificial Intelligence, 20(7), 543-583.
    • (2006) Applied Artificial Intelligence , vol.20 , Issue.7 , pp. 543-583
    • Kavšek, B.1    Lavrač, N.2
  • 15
    • 0002192370 scopus 로고    scopus 로고
    • Explora: A multipattern and multistrategy discovery assistant
    • American Association for Artificial Intelligence Menlo Park
    • Klösgen, W. (1996). Explora: a multipattern and multistrategy discovery assistant. In Advances in knowledge discovery and data mining, (pp. 249-271). Menlo Park: American Association for Artificial Intelligence.
    • (1996) Advances in Knowledge Discovery and Data Mining , pp. 249-271
    • Klösgen, W.1
  • 16
    • 61749084093 scopus 로고    scopus 로고
    • Supervised descriptive rule discovery: A unifying survey of contrast set, emerging pattern and subgroup mining
    • 1235.68178
    • Kralj Novak, P.; Lavrač, N.; Webb, G.I. (2009). Supervised descriptive rule discovery: a unifying survey of contrast set, emerging pattern and subgroup mining. Journal of Machine Learning Research, 10, 377-403.
    • (2009) Journal of Machine Learning Research , vol.10 , pp. 377-403
    • Kralj Novak, P.1    Lavrač, N.2    Webb, G.I.3
  • 17
    • 84866883130 scopus 로고    scopus 로고
    • Clowdflows: A cloud based scientific workflow platform
    • A. Flach T.D. Bie N. Cristianini (eds) Springer Berlin Heidelberg
    • Kranjc, J.; Podpečan, V.; Lavrač, N. (2012). Clowdflows: a cloud based scientific workflow platform. In P.A. Flach, T.D. Bie, N. Cristianini (Eds.), ECML/PKDD (2), lecture notes in computer science (Vol. 7524, pp. 816-819). Berlin Heidelberg: Springer.
    • (2012) ECML/PKDD (2), Lecture Notes in Computer Science Vol. 7524 , pp. 816-819
    • Kranjc, J.1    Podpečan, V.2    Lavrač, N.3
  • 21
    • 79960137875 scopus 로고    scopus 로고
    • Fr-ont: An algorithm for frequent concept mining with formal ontologies
    • M. Kryszkiewicz H. Rybinski A. Skowron Z.W. Ras (eds) Springer Berlin Heidelberg
    • Lawrynowicz, A.; Potoniec, J. (2011). Fr-ont: an algorithm for frequent concept mining with formal ontologies. In M. Kryszkiewicz, H. Rybinski, A. Skowron, Z.W. Ras (Eds.), ISMIS, lecture notes in computer science (Vol. 6804, pp. 428-437). Berlin Heidelberg: Springer.
    • (2011) ISMIS, Lecture Notes in Computer Science Vol. 6804 , pp. 428-437
    • Lawrynowicz, A.1    Potoniec, J.2
  • 23
    • 77749291770 scopus 로고    scopus 로고
    • Frozen robust multiarray analysis (fRMA)
    • 10.1093/biostatistics/kxp059
    • McCall, M.N.; Bolstad, B.M.; Irizarry, R.A. (2010). Frozen robust multiarray analysis (fRMA). Biostatistics, 11(2), 242-253.
    • (2010) Biostatistics , vol.11 , Issue.2 , pp. 242-253
    • McCall, M.N.1    Bolstad, B.M.2    Irizarry, R.A.3
  • 26
    • 84555194895 scopus 로고    scopus 로고
    • Orange4WS environment for service-oriented data mining
    • doi: 10.1093/comjnl/bxr077. Accessed 7 Aug 2011
    • Podpečan, V.; Zemenova, M.; Lavrač, N. (2011b). Orange4WS environment for service-oriented data mining. The Computer Journal. doi: 10.1093/comjnl/bxr077. Accessed 7 Aug 2011.
    • (2011) The Computer Journal
    • Podpečan, V.1    Zemenova, M.2    Lavrač, N.3
  • 27
    • 0141990695 scopus 로고    scopus 로고
    • Theoretical and empirical analysis of ReliefF and RReliefF
    • 10.1023/A:1025667309714 1076.68065
    • Robnik-Šikonja, M.; Kononenko, I. (2003). Theoretical and empirical analysis of ReliefF and RReliefF. Machine Learning, 53, 23-69.
    • (2003) Machine Learning , vol.53 , pp. 23-69
    • Robnik-Šikonja, M.1    Kononenko, I.2
  • 29
    • 2542454374 scopus 로고    scopus 로고
    • Srinivasan, A. (2007). Aleph manual. http://www.cs.ox.ac.uk/activities/ machinelearning/Aleph/.
    • (2007) Aleph Manual
    • Srinivasan, A.1
  • 32
    • 33746820611 scopus 로고    scopus 로고
    • Data mining methods for discovering interesting exceptions from an unsupervised table
    • Suzuki, E. (2006). Data mining methods for discovering interesting exceptions from an unsupervised table. Journal of Universal Computer Science, 12(6), 627-653.
    • (2006) Journal of Universal Computer Science , vol.12 , Issue.6 , pp. 627-653
    • Suzuki, E.1
  • 34
    • 46649101347 scopus 로고    scopus 로고
    • SEGS: Search for enriched gene sets in microarray data
    • 10.1016/j.jbi.2007.12.001
    • Trajkovski, I.; Lavrač, N.; Tolar, J. (2008). SEGS: search for enriched gene sets in microarray data. Journal of Biomedical Informatics, 41(4), 588-601.
    • (2008) Journal of Biomedical Informatics , vol.41 , Issue.4 , pp. 588-601
    • Trajkovski, I.1    Lavrač, N.2    Tolar, J.3
  • 35
    • 84867320105 scopus 로고    scopus 로고
    • Semantic subgroup discovery systems and workflows in the SDM-Toolkit
    • 10.1093/comjnl/bxs057
    • Vavpetič, A.; Lavrač, N. (2013). Semantic subgroup discovery systems and workflows in the SDM-Toolkit. Computer Journal, 56(3), 304-320.
    • (2013) Computer Journal , vol.56 , Issue.3 , pp. 304-320
    • Vavpetič, A.1    Lavrač, N.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.