메뉴 건너뛰기




Volumn , Issue , 2009, Pages 967-974

Regularized multi-class semi-supervised boosting

Author keywords

[No Author keywords available]

Indexed keywords

COMPUTER VISION; LEARNING ALGORITHMS; LEARNING SYSTEMS;

EID: 70450219022     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/CVPRW.2009.5206715     Document Type: Conference Paper
Times cited : (29)

References (29)
  • 1
    • 24044435942 scopus 로고    scopus 로고
    • Reducing multiclass to binary: A unifying approach for margin classifiers
    • E. L. Allwein, R. E. Schapire, and Y. Singer. Reducing multiclass to binary: A unifying ap-proach for margin classifiers. JMLR, 1: 113- 141, 2000.
    • (2000) JMLR , vol.1 , pp. 113-141
    • Allwein, E.L.1    Schapire, R.E.2    Singer, Y.3
  • 2
    • 34547998923 scopus 로고    scopus 로고
    • The rendezvous algorithm: Multiclass semi-supervised learning with markov random walks
    • A. Azran. The rendezvous algorithm: multiclass semi-supervised learning with markov random walks. In ICML, pages 49-56, 2007.
    • (2007) ICML , pp. 49-56
    • Azran, A.1
  • 3
    • 33750729556 scopus 로고    scopus 로고
    • Manifold regularization: A geometric framework for learning from labeled and unlabeled examples
    • M. Belkin, P. Niyogi, and V. Sindhwani. Manifold regularization: A geometric framework for learning from labeled and unlabeled examples. JMLR, 7: 2399-2434, 2006.
    • (2006) JMLR , vol.7 , pp. 2399-2434
    • Belkin, M.1    Niyogi, P.2    Sindhwani, V.3
  • 4
    • 0031620208 scopus 로고    scopus 로고
    • Combining labeled and unlabeled data with co-training
    • A. Blum and T. Mitchell. Combining labeled and unlabeled data with co-training. In COLT, pages 92-100, 1998.
    • (1998) COLT , pp. 92-100
    • Blum, A.1    Mitchell, T.2
  • 5
    • 0035478854 scopus 로고    scopus 로고
    • Random forests
    • L. Breiman. Random forests. Machine Learning, 45(1): 5-32, 2001.
    • (2001) Machine Learning , vol.45 , Issue.1 , pp. 5-32
    • Breiman, L.1
  • 6
    • 0003006556 scopus 로고
    • Estimating probabilities: A crucial task in machine learning
    • B. Cestnik. Estimating probabilities: A crucial task in machine learning. In ECAI, pages 147- 149, 1990.
    • (1990) ECAI , pp. 147-149
    • Cestnik, B.1
  • 8
    • 50649084677 scopus 로고    scopus 로고
    • Cluster kernels for semi-supervised learning
    • O. Chapelle, J. Weston, and B. Schölkopf. Cluster kernels for semi-supervised learning. In NIPS, pages 585-592, 2003.
    • (2003) NIPS , pp. 585-592
    • Chapelle, O.1    Weston, J.2    Schölkopf, B.3
  • 10
    • 0034164230 scopus 로고    scopus 로고
    • Additive logistic regression: A statistical view of boosting
    • J. Friedman, T. Hastie, and R. Tibshirani. Additive logistic regression: A statistical view of boosting. The Annals of Statistics, 38(2): 337- 374, 2000.
    • (2000) The Annals of Statistics , vol.38 , Issue.2 , pp. 337-374
    • Friedman, J.1    Hastie, T.2    Tibshirani, R.3
  • 12
    • 1942483137 scopus 로고    scopus 로고
    • Transductive inference for text classification using support vector machines
    • T. Joachims. Transductive inference for text classification using support vector machines. In ICML, pages 200-209, 1999.
    • (1999) ICML , pp. 200-209
    • Joachims, T.1
  • 13
    • 33845572523 scopus 로고    scopus 로고
    • Beyond bags of features: Spatial pyramid matching for recognizing natural scene categories
    • S. Lazebnik, C. Schmid, and J. Ponce. Beyond bags of features: Spatial pyramid matching for recognizing natural scene categories. In CVPR, pages 2169-2178, 2006.
    • (2006) CVPR , pp. 2169-2178
    • Lazebnik, S.1    Schmid, C.2    Ponce., J.3
  • 14
    • 51949092496 scopus 로고    scopus 로고
    • Semi-supervised boosting using visual similarity learning
    • C. Leistner, H. Grabner, and H. Bischof. Semi-supervised boosting using visual similarity learning. In CVPR, 2008.
    • (2008) CVPR
    • Leistner, C.1    Grabner, H.2    Bischof, H.3
  • 15
    • 45849137394 scopus 로고    scopus 로고
    • ROC analysis with multiple classes and multiple tests: Methodology and its application in microarray studies
    • J. Li and J. Fine. ROC analysis with multiple classes and multiple tests: Methodology and its application in microarray studies. Biostatistics, 9(3): 566-576, 2008.
    • (2008) Biostatistics , vol.9 , Issue.3 , pp. 566-576
    • Li, J.1    Fine, J.2
  • 16
    • 2342495357 scopus 로고    scopus 로고
    • A note on margin-based loss functions in classification
    • Y. Lin. A note on margin-based loss functions in classification. Statistics & Probability Letters, 68(1): 73-82, 2004.
    • (2004) Statistics & Probability Letters , vol.68 , Issue.1 , pp. 73-82
    • Lin, Y.1
  • 17
    • 34547978786 scopus 로고    scopus 로고
    • Simple, robust, scalable semi-supervised learning via expectation regularization
    • G. S. Mann and A. Mccallum. Simple, robust, scalable semi-supervised learning via expectation regularization. In ICML, pages 593-600, 2007.
    • (2007) ICML , pp. 593-600
    • Mann, G.S.1    Mccallum, A.2
  • 20
    • 57949087742 scopus 로고    scopus 로고
    • Multi-class semisupervised learning with the e-truncated multinomial probit gaussian process
    • S. Rogers and M. Girolami. Multi-class semisupervised learning with the e-truncated multinomial probit gaussian process. JMLR, 1: 17- 32, 2007.
    • (2007) JMLR , vol.1 , pp. 17-32
    • Rogers, S.1    Girolami, M.2
  • 21
    • 12844274244 scopus 로고    scopus 로고
    • Boosting as a regularized path to a maximum margin classifier
    • S. Rosset, J. Zhu, T. Hastie, and R. Schapire. Boosting as a regularized path to a maximum margin classifier. JMLR, 5: 941-973, 2004.
    • (2004) JMLR , vol.5 , pp. 941-973
    • Rosset, S.1    Zhu, J.2    Hastie, T.3    Schapire, R.4
  • 22
    • 70450181937 scopus 로고    scopus 로고
    • SERBoost: Semi-supervised boosting with expectation regularization
    • A. Saffari, H. Grabner, and H. Bischof. SERBoost: Semi-supervised boosting with expectation regularization. In ECCV, 2008.
    • (2008) ECCV
    • Saffari, A.1    Grabner, H.2    Bischof, H.3
  • 24
    • 33750373672 scopus 로고    scopus 로고
    • Large scale semi-supervised linear svms
    • V. Sindhwani and S. S. Keerthi. Large scale semi-supervised linear svms. In SIGIR, pages 477-484, 2006.
    • (2006) SIGIR , pp. 477-484
    • Sindhwani, V.1    Keerthi, S.S.2
  • 26
    • 34047200109 scopus 로고    scopus 로고
    • Sharing visual features for multiclass and multiview object detection
    • A. Torralba, K. P. Murphy, and W. T. Freeman. Sharing visual features for multiclass and multiview object detection. PAMI, 29(5): 854-869, 2007.
    • (2007) PAMI , vol.29 , Issue.5 , pp. 854-869
    • Torralba, A.1    Murphy, K.P.2    Freeman, W.T.3
  • 27
    • 56449089515 scopus 로고    scopus 로고
    • Unsupervised and semi-supervised multi-class support vector machines
    • L. Xu and D. Schuurmans. Unsupervised and semi-supervised multi-class support vector machines. In AAAI, 2005.
    • (2005) AAAI
    • Xu, L.1    Schuurmans., D.2
  • 29
    • 70049095487 scopus 로고    scopus 로고
    • New multicategory boosting algorithms based on multicategory fisher-consistent losses
    • H. Zou, J. Zhu, and T. Hastie. New multicategory boosting algorithms based on multicategory fisher-consistent losses. Annals of Applied Statistics, 2008.
    • (2008) Annals of Applied Statistics
    • Zou, H.1    Zhu, J.2    Hastie, T.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.