-
1
-
-
24044435942
-
Reducing multiclass to binary: A unifying approach for margin classifiers
-
E. L. Allwein, R. E. Schapire, and Y. Singer. Reducing multiclass to binary: A unifying ap-proach for margin classifiers. JMLR, 1: 113- 141, 2000.
-
(2000)
JMLR
, vol.1
, pp. 113-141
-
-
Allwein, E.L.1
Schapire, R.E.2
Singer, Y.3
-
2
-
-
34547998923
-
The rendezvous algorithm: Multiclass semi-supervised learning with markov random walks
-
A. Azran. The rendezvous algorithm: multiclass semi-supervised learning with markov random walks. In ICML, pages 49-56, 2007.
-
(2007)
ICML
, pp. 49-56
-
-
Azran, A.1
-
3
-
-
33750729556
-
Manifold regularization: A geometric framework for learning from labeled and unlabeled examples
-
M. Belkin, P. Niyogi, and V. Sindhwani. Manifold regularization: A geometric framework for learning from labeled and unlabeled examples. JMLR, 7: 2399-2434, 2006.
-
(2006)
JMLR
, vol.7
, pp. 2399-2434
-
-
Belkin, M.1
Niyogi, P.2
Sindhwani, V.3
-
4
-
-
0031620208
-
Combining labeled and unlabeled data with co-training
-
A. Blum and T. Mitchell. Combining labeled and unlabeled data with co-training. In COLT, pages 92-100, 1998.
-
(1998)
COLT
, pp. 92-100
-
-
Blum, A.1
Mitchell, T.2
-
5
-
-
0035478854
-
Random forests
-
L. Breiman. Random forests. Machine Learning, 45(1): 5-32, 2001.
-
(2001)
Machine Learning
, vol.45
, Issue.1
, pp. 5-32
-
-
Breiman, L.1
-
6
-
-
0003006556
-
Estimating probabilities: A crucial task in machine learning
-
B. Cestnik. Estimating probabilities: A crucial task in machine learning. In ECAI, pages 147- 149, 1990.
-
(1990)
ECAI
, pp. 147-149
-
-
Cestnik, B.1
-
8
-
-
50649084677
-
Cluster kernels for semi-supervised learning
-
O. Chapelle, J. Weston, and B. Schölkopf. Cluster kernels for semi-supervised learning. In NIPS, pages 585-592, 2003.
-
(2003)
NIPS
, pp. 585-592
-
-
Chapelle, O.1
Weston, J.2
Schölkopf, B.3
-
10
-
-
0034164230
-
Additive logistic regression: A statistical view of boosting
-
J. Friedman, T. Hastie, and R. Tibshirani. Additive logistic regression: A statistical view of boosting. The Annals of Statistics, 38(2): 337- 374, 2000.
-
(2000)
The Annals of Statistics
, vol.38
, Issue.2
, pp. 337-374
-
-
Friedman, J.1
Hastie, T.2
Tibshirani, R.3
-
11
-
-
33646430006
-
Extremely randomized trees
-
P. Geurts, D. Ernst, and L. Wehenkel. Extremely randomized trees. In Machine Learning, volume 63, pages 3-42, 2006.
-
(2006)
Machine Learning
, vol.63
, pp. 3-42
-
-
Geurts, P.1
Ernst, D.2
Wehenkel, L.3
-
12
-
-
1942483137
-
Transductive inference for text classification using support vector machines
-
T. Joachims. Transductive inference for text classification using support vector machines. In ICML, pages 200-209, 1999.
-
(1999)
ICML
, pp. 200-209
-
-
Joachims, T.1
-
13
-
-
33845572523
-
Beyond bags of features: Spatial pyramid matching for recognizing natural scene categories
-
S. Lazebnik, C. Schmid, and J. Ponce. Beyond bags of features: Spatial pyramid matching for recognizing natural scene categories. In CVPR, pages 2169-2178, 2006.
-
(2006)
CVPR
, pp. 2169-2178
-
-
Lazebnik, S.1
Schmid, C.2
Ponce., J.3
-
14
-
-
51949092496
-
Semi-supervised boosting using visual similarity learning
-
C. Leistner, H. Grabner, and H. Bischof. Semi-supervised boosting using visual similarity learning. In CVPR, 2008.
-
(2008)
CVPR
-
-
Leistner, C.1
Grabner, H.2
Bischof, H.3
-
15
-
-
45849137394
-
ROC analysis with multiple classes and multiple tests: Methodology and its application in microarray studies
-
J. Li and J. Fine. ROC analysis with multiple classes and multiple tests: Methodology and its application in microarray studies. Biostatistics, 9(3): 566-576, 2008.
-
(2008)
Biostatistics
, vol.9
, Issue.3
, pp. 566-576
-
-
Li, J.1
Fine, J.2
-
16
-
-
2342495357
-
A note on margin-based loss functions in classification
-
Y. Lin. A note on margin-based loss functions in classification. Statistics & Probability Letters, 68(1): 73-82, 2004.
-
(2004)
Statistics & Probability Letters
, vol.68
, Issue.1
, pp. 73-82
-
-
Lin, Y.1
-
17
-
-
34547978786
-
Simple, robust, scalable semi-supervised learning via expectation regularization
-
G. S. Mann and A. Mccallum. Simple, robust, scalable semi-supervised learning via expectation regularization. In ICML, pages 593-600, 2007.
-
(2007)
ICML
, pp. 593-600
-
-
Mann, G.S.1
Mccallum, A.2
-
18
-
-
0002550596
-
-
MIT Press, Cambridge, MA
-
L. Mason, J. Baxter, P. Bartlett, and M. Frean. Functional gradient techniques for combining hypotheses, pages 221-247. MIT Press, Cambridge, MA., 1999.
-
(1999)
Functional Gradient Techniques for Combining Hypotheses
, pp. 221-247
-
-
Mason, L.1
Baxter, J.2
Bartlett, P.3
Frean, M.4
-
20
-
-
57949087742
-
Multi-class semisupervised learning with the e-truncated multinomial probit gaussian process
-
S. Rogers and M. Girolami. Multi-class semisupervised learning with the e-truncated multinomial probit gaussian process. JMLR, 1: 17- 32, 2007.
-
(2007)
JMLR
, vol.1
, pp. 17-32
-
-
Rogers, S.1
Girolami, M.2
-
21
-
-
12844274244
-
Boosting as a regularized path to a maximum margin classifier
-
S. Rosset, J. Zhu, T. Hastie, and R. Schapire. Boosting as a regularized path to a maximum margin classifier. JMLR, 5: 941-973, 2004.
-
(2004)
JMLR
, vol.5
, pp. 941-973
-
-
Rosset, S.1
Zhu, J.2
Hastie, T.3
Schapire, R.4
-
22
-
-
70450181937
-
SERBoost: Semi-supervised boosting with expectation regularization
-
A. Saffari, H. Grabner, and H. Bischof. SERBoost: Semi-supervised boosting with expectation regularization. In ECCV, 2008.
-
(2008)
ECCV
-
-
Saffari, A.1
Grabner, H.2
Bischof, H.3
-
24
-
-
33750373672
-
Large scale semi-supervised linear svms
-
V. Sindhwani and S. S. Keerthi. Large scale semi-supervised linear svms. In SIGIR, pages 477-484, 2006.
-
(2006)
SIGIR
, pp. 477-484
-
-
Sindhwani, V.1
Keerthi, S.S.2
-
25
-
-
33749600088
-
Graph based multi-class semi-supervised learning using gaussian process
-
Y. Song, C. Zhang, and J. Lee. Graph based multi-class semi-supervised learning using gaussian process. In IAPR workshop on Structural, Syntactic, and Statistical Pattern Recognition, pages 450-458, 2006.
-
(2006)
IAPR Workshop on Structural, Syntactic, and Statistical Pattern Recognition
, pp. 450-458
-
-
Song, Y.1
Zhang, C.2
Lee, J.3
-
26
-
-
34047200109
-
Sharing visual features for multiclass and multiview object detection
-
A. Torralba, K. P. Murphy, and W. T. Freeman. Sharing visual features for multiclass and multiview object detection. PAMI, 29(5): 854-869, 2007.
-
(2007)
PAMI
, vol.29
, Issue.5
, pp. 854-869
-
-
Torralba, A.1
Murphy, K.P.2
Freeman, W.T.3
-
27
-
-
56449089515
-
Unsupervised and semi-supervised multi-class support vector machines
-
L. Xu and D. Schuurmans. Unsupervised and semi-supervised multi-class support vector machines. In AAAI, 2005.
-
(2005)
AAAI
-
-
Xu, L.1
Schuurmans., D.2
-
29
-
-
70049095487
-
New multicategory boosting algorithms based on multicategory fisher-consistent losses
-
H. Zou, J. Zhu, and T. Hastie. New multicategory boosting algorithms based on multicategory fisher-consistent losses. Annals of Applied Statistics, 2008.
-
(2008)
Annals of Applied Statistics
-
-
Zou, H.1
Zhu, J.2
Hastie, T.3
|