메뉴 건너뛰기




Volumn , Issue , 2011, Pages 1832-1839

Strong supervision from weak annotation: Interactive training of deformable part models

Author keywords

[No Author keywords available]

Indexed keywords

COMPLEX IMAGE; CURRENT MODELS; DATA SETS; INTERACTIVE LABELING; INTERACTIVE TRAINING; LARGE DATASETS; NOVEL ALGORITHM; ONLINE LEARNING; OPTIMALITY; STRUCTURED MODEL;

EID: 84856684024     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/ICCV.2011.6126450     Document Type: Conference Paper
Times cited : (98)

References (31)
  • 1
    • 84856688980 scopus 로고    scopus 로고
    • Semi-automatic visual learning (seville
    • Y. Abramson and Y. Freund. Semi-automatic visual learning (seville). CVPR Tutorial, 2005.
    • (2005) CVPR Tutorial
    • Abramson, Y.1    Freund, Y.2
  • 2
    • 70350619001 scopus 로고    scopus 로고
    • Learning to localize objects with structured output regression
    • M. Blaschko and C. Lampert. Learning to localize objects with structured output regression. In ECCV, 2008.
    • (2008) ECCV
    • Blaschko, M.1    Lampert, C.2
  • 3
    • 77956002528 scopus 로고    scopus 로고
    • Poselets: Body part detectors trained using 3d human pose annotations
    • L. Bourdev and J. Malik. Poselets: Body part detectors trained using 3d human pose annotations. In ICCV, 2010.
    • (2010) ICCV
    • Bourdev, L.1    Malik, J.2
  • 5
    • 77953180995 scopus 로고    scopus 로고
    • Discriminative models for multi-class object layout
    • C. Desai, D. Ramanan, and C. Fowlkes. Discriminative models for multi-class object layout. In ICCV, 2009.
    • (2009) ICCV
    • Desai, C.1    Ramanan, D.2    Fowlkes, C.3
  • 8
    • 50949133669 scopus 로고    scopus 로고
    • LIBLINEAR: Library for large linear classification
    • R. Fan, K. Chang, C. Hsieh, X. Wang, and C. Lin. LIBLINEAR: Library for large linear classification. JMLR, 2008.
    • (2008) JMLR
    • Fan, R.1    Chang, K.2    Hsieh, C.3    Wang, X.4    Lin, C.5
  • 9
    • 84856659157 scopus 로고    scopus 로고
    • Efficient matching of pictorial structures
    • P. Felzenszwalb and D. Huttenlocher. Efficient matching of pictorial structures. In CVPR, 2002.
    • (2002) CVPR
    • Felzenszwalb, P.1    Huttenlocher, D.2
  • 10
    • 51949101231 scopus 로고    scopus 로고
    • A discriminatively trained, multiscale, deformable part model
    • P. Felzenszwalb, D. McAllester, and D. Ramanan. A discriminatively trained, multiscale, deformable part model. In CVPR, 2008.
    • (2008) CVPR
    • Felzenszwalb, P.1    McAllester, D.2    Ramanan, D.3
  • 11
    • 35348918820 scopus 로고    scopus 로고
    • Logarithmic regret algorithms for online convex optimization
    • E. Hazan, A. Agarwal, and S. Kale. Logarithmic regret algorithms for online convex optimization. M.L., 2007.
    • (2007) M.L.
    • Hazan, E.1    Agarwal, A.2    Kale, S.3
  • 12
    • 84887384542 scopus 로고    scopus 로고
    • Mind the duality gap: Logarithmic regret algorithms for online optimization
    • S. Kakade and S. Shalev-Shwartz. Mind the duality gap: Logarithmic regret algorithms for online optimization. In NIPS, 2008.
    • (2008) NIPS
    • Kakade, S.1    Shalev-Shwartz, S.2
  • 13
    • 84887361274 scopus 로고    scopus 로고
    • A closed-form solution to natural image matting
    • A. Levin, D. Lischinski, and Y. Weiss. A closed-form solution to natural image matting. PAM1, 2007.
    • (2007) PAMI
    • Levin, A.1    Lischinski, D.2    Weiss, Y.3
  • 14
    • 80052877810 scopus 로고    scopus 로고
    • Learning structured prediction models for interactive labeling
    • T. Mensink, J. Verbeek, and G. Csurka. Learning structured prediction models for interactive labeling. In CVPR, 2011.
    • (2011) CVPR
    • Mensink, T.1    Verbeek, J.2    Csurka, G.3
  • 15
    • 80052912053 scopus 로고    scopus 로고
    • Shared parts for deformable partbased models
    • P. Ott and M. Everingham. Shared parts for deformable partbased models. In CVPR, 2011.
    • (2011) CVPR
    • Ott, P.1    Everingham, M.2
  • 16
    • 72449164388 scopus 로고    scopus 로고
    • Subgradient methods for structured prediction
    • (Online
    • N. Ratliff. (Online) Subgradient Methods for Structured Prediction. In AIStats, 2007.
    • (2007) AIStats
    • Ratliff, N.1
  • 17
    • 12844262766 scopus 로고    scopus 로고
    • Grabcut: Interactive foreground extraction using graph cuts
    • C. Rother, V. Kolmogorov, and A. Blake. Grabcut: Interactive foreground extraction using graph cuts. In TOG, 2004.
    • (2004) TOG
    • Rother, C.1    Kolmogorov, V.2    Blake, A.3
  • 18
    • 48849117633 scopus 로고    scopus 로고
    • Pegasos: Primal estimated sub-gradient solver for SVM
    • S. Shalev-Shwartz, Y. Singer, and N. Srebro. Pegasos: Primal estimated sub-gradient solver for SVM. In ICML, 2007.
    • (2007) ICML
    • Shalev-Shwartz, S.1    Singer, Y.2    Srebro, N.3
  • 19
    • 51949091791 scopus 로고    scopus 로고
    • Discriminative human action segmentation and recognition using semimarkov model
    • Q. Shi, L. Wang, L. Cheng, and A. Smola. Discriminative human action segmentation and recognition using semimarkov model. In CVPR, 2008.
    • (2008) CVPR
    • Shi, Q.1    Wang, L.2    Cheng, L.3    Smola, A.4
  • 20
    • 70350708534 scopus 로고    scopus 로고
    • Large margin methods for structured and interdependent output variables
    • I. Tsochantaridis, T. Joachims, T. Hofmann, and Y. Altun. Large margin methods for structured and interdependent output variables. JMLR, 2006.
    • (2006) JMLR
    • Tsochantaridis, I.1    Joachims, T.2    Hofmann, T.3    Altun, Y.4
  • 21
    • 70450197013 scopus 로고    scopus 로고
    • What's it going to cost you?: Predicting effort Vs. informativeness for multi-label image annotations
    • S. Vijayanarasimhan and K. Grauman. What's It Going to Cost You?: Predicting Effort vs. Informativeness for Multi-Label Image Annotations. In CVPR, 2009.
    • (2009) CVPR
    • Vijayanarasimhan, S.1    Grauman, K.2
  • 23
  • 25
    • 0002409979 scopus 로고    scopus 로고
    • Unsupervised learning of models for recognition
    • M.Weber, M.Welling, and P. Perona. Unsupervised learning of models for recognition. In ECCV, 2000.
    • (2000) ECCV
    • Weber, M.1    Welling, M.2    Perona, P.3
  • 27
    • 84856655450 scopus 로고    scopus 로고
    • SmartLabel: An object labeling tool
    • W. Wu and J. Yang. SmartLabel: An object labeling tool. In ACM Multimedia, 2006.
    • (2006) ACM Multimedia
    • Wu, W.1    Yang, J.2
  • 28
    • 80052895150 scopus 로고    scopus 로고
    • Articulated pose estimation using flexible mixtures of parts
    • Y. Yang and D. Ramanan. Articulated Pose Estimation using Flexible Mixtures of Parts. In CVPR, 2011.
    • (2011) CVPR
    • Yang, Y.1    Ramanan, D.2
  • 29
    • 34548709821 scopus 로고    scopus 로고
    • Introduction to a large-scale general purpose ground truth database
    • B. Yao, X. Yang, and S. Zhu. Introduction to a large-scale general purpose ground truth database. In EMMCVPR, 2007.
    • (2007) EMMCVPR
    • Yao, B.1    Yang, X.2    Zhu, S.3
  • 30
    • 71149086466 scopus 로고    scopus 로고
    • Learning structural SVMs with latent variables
    • C. Yu and T. Joachims. Learning structural SVMs with latent variables. In ICML, 2009.
    • (2009) ICML
    • Yu, C.1    Joachims, T.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.