-
2
-
-
0034735526
-
Chlamydomonas IFT88 and its mouse homologue, polycystic kidney disease gene Tg737, are required for assembly of cilia and flagella
-
Pazour G, Dickert BL, Vucica Y, Seeley ES, et al. 2000. Chlamydomonas IFT88 and its mouse homologue, polycystic kidney disease gene Tg737, are required for assembly of cilia and flagella. J Cell Biol 151: 709-18.
-
(2000)
J Cell Biol
, vol.151
, pp. 709-718
-
-
Pazour, G.1
Dickert, B.L.2
Vucica, Y.3
Seeley, E.S.4
-
4
-
-
84881532489
-
An in vitro assay for entry into cilia reveals unique properties of the soluble diffusion barrier
-
Breslow DK, Koslover EF, Seydel F, Spakowitz AJ, et al. 2013. An in vitro assay for entry into cilia reveals unique properties of the soluble diffusion barrier. J Cell Biol 203: 129-47.
-
(2013)
J Cell Biol
, vol.203
, pp. 129-147
-
-
Breslow, D.K.1
Koslover, E.F.2
Seydel, F.3
Spakowitz, A.J.4
-
5
-
-
79959342286
-
Ciliary diffusion barrier: the gatekeeper for the primary cilium compartment
-
Hu Q, Nelson WJ. 2011. Ciliary diffusion barrier: the gatekeeper for the primary cilium compartment. Cytoskeleton 68: 313-24.
-
(2011)
Cytoskeleton
, vol.68
, pp. 313-324
-
-
Hu, Q.1
Nelson, W.J.2
-
7
-
-
0031750484
-
Chlamydomonas kinesin-II-dependent intraflagellar transport (IFT): IFT particles contain proteins required for ciliary assembly in Caenorhabditis elegans sensory neurons
-
Cole DG, Diener DR, Himelblau AL, Beech PL, et al. 1998. Chlamydomonas kinesin-II-dependent intraflagellar transport (IFT): IFT particles contain proteins required for ciliary assembly in Caenorhabditis elegans sensory neurons. J Cell Biol 141: 993-1008.
-
(1998)
J Cell Biol
, vol.141
, pp. 993-1008
-
-
Cole, D.G.1
Diener, D.R.2
Himelblau, A.L.3
Beech, P.L.4
-
8
-
-
0029585763
-
The Chlamydomonas kinesin-like protein FLA10 is involved in motility associated with the flagellar membrane
-
Kozminski KG, Beech PL, Rosenbaum JL. 1995. The Chlamydomonas kinesin-like protein FLA10 is involved in motility associated with the flagellar membrane. J Cell Biol 131: 1517-27.
-
(1995)
J Cell Biol
, vol.131
, pp. 1517-1527
-
-
Kozminski, K.G.1
Beech, P.L.2
Rosenbaum, J.L.3
-
9
-
-
0028241107
-
The Chlamydomonas FLA10 gene encodes a novel kinesin-homologous protein
-
Walther Z, Vashishtha M, Hall JL. 1994. The Chlamydomonas FLA10 gene encodes a novel kinesin-homologous protein. J Cell Biol 126: 175-88.
-
(1994)
J Cell Biol
, vol.126
, pp. 175-188
-
-
Walther, Z.1
Vashishtha, M.2
Hall, J.L.3
-
10
-
-
0033535044
-
The DHC1b (DHC2) isoform of cytoplasmic dynein is required for flagellar assembly
-
Pazour GJ, Dickert BL, Witman GB. 1999. The DHC1b (DHC2) isoform of cytoplasmic dynein is required for flagellar assembly. J Cell Biol 144: 473-81.
-
(1999)
J Cell Biol
, vol.144
, pp. 473-481
-
-
Pazour, G.J.1
Dickert, B.L.2
Witman, G.B.3
-
11
-
-
0032949365
-
Cytoplasmic dynein heavy chain 1b is required for flagellar assembly in Chlamydomonas
-
Porter ME, Bower R, Knott JA, Byrd P, et al. 1999. Cytoplasmic dynein heavy chain 1b is required for flagellar assembly in Chlamydomonas. Mol Biol Cell 10: 693-712.
-
(1999)
Mol Biol Cell
, vol.10
, pp. 693-712
-
-
Porter, M.E.1
Bower, R.2
Knott, J.A.3
Byrd, P.4
-
12
-
-
0038522846
-
A novel dynein light intermediate chain colocalizes with the retrograde motor for intraflagellar transport at sites of axoneme assembly in Chlamydomonas and mammalian cells
-
Perrone CA, Tritschler D, Taulman P, Bower R, et al. 2003. A novel dynein light intermediate chain colocalizes with the retrograde motor for intraflagellar transport at sites of axoneme assembly in Chlamydomonas and mammalian cells. Mol Biol Cell 14: 2041-56.
-
(2003)
Mol Biol Cell
, vol.14
, pp. 2041-2056
-
-
Perrone, C.A.1
Tritschler, D.2
Taulman, P.3
Bower, R.4
-
13
-
-
4644274566
-
A dynein light intermediate chain, D1bLIC, is required for retrograde intraflagellar transport
-
Hou Y, Pazour GJ, Witman GB. 2004. A dynein light intermediate chain, D1bLIC, is required for retrograde intraflagellar transport. Mol Biol Cell 15: 4382-94.
-
(2004)
Mol Biol Cell
, vol.15
, pp. 4382-4394
-
-
Hou, Y.1
Pazour, G.J.2
Witman, G.B.3
-
14
-
-
84869104905
-
The role of retrograde intraflagellar transport in flagellar assembly, maintenance, and function
-
Engel BD, Ishikawa H, Wemmer KA, Geimer S, et al. 2012. The role of retrograde intraflagellar transport in flagellar assembly, maintenance, and function. J Cell Biol 199: 151-67.
-
(2012)
J Cell Biol
, vol.199
, pp. 151-167
-
-
Engel, B.D.1
Ishikawa, H.2
Wemmer, K.A.3
Geimer, S.4
-
15
-
-
0032517769
-
Distinct mutants of retrograde intraflagellar transport (IFT) share similar morphological and molecular defects
-
Piperno G, Siuda E, Henderson S, Segil M, et al. 1998. Distinct mutants of retrograde intraflagellar transport (IFT) share similar morphological and molecular defects. J Cell Biol 143: 1591-601.
-
(1998)
J Cell Biol
, vol.143
, pp. 1591-1601
-
-
Piperno, G.1
Siuda, E.2
Henderson, S.3
Segil, M.4
-
16
-
-
23044441462
-
Characterization of the intraflagellar transport complex B core: direct interaction of the IFT81 and IFT74/72 subunits
-
Lucker BF, Behal RH, Qin H, Siron LC, et al. 2005. Characterization of the intraflagellar transport complex B core: direct interaction of the IFT81 and IFT74/72 subunits. J Biol Chem 280: 27688-96.
-
(2005)
J Biol Chem
, vol.280
, pp. 27688-27696
-
-
Lucker, B.F.1
Behal, R.H.2
Qin, H.3
Siron, L.C.4
-
17
-
-
0035795413
-
Protein particles in Chlamydomonas flagella undergo a transport cycle consisting of four phases
-
Iomini C, Babaev-Khaimov V, Sassaroli M, Piperno G. 2001. Protein particles in Chlamydomonas flagella undergo a transport cycle consisting of four phases. J Cell Biol 153: 13-24.
-
(2001)
J Cell Biol
, vol.153
, pp. 13-24
-
-
Iomini, C.1
Babaev-Khaimov, V.2
Sassaroli, M.3
Piperno, G.4
-
18
-
-
33644779653
-
Dissecting the molecular mechanisms of intraflagellar transport in Chlamydomonas
-
Pedersen LB, Geimer S, Rosenbaum JL. 2006. Dissecting the molecular mechanisms of intraflagellar transport in Chlamydomonas. Curr Biol 16: 450-9.
-
(2006)
Curr Biol
, vol.16
, pp. 450-459
-
-
Pedersen, L.B.1
Geimer, S.2
Rosenbaum, J.L.3
-
19
-
-
84875608056
-
Intraflagellar transport proteins cycle between the flagellum and its base
-
Buisson J, Chenouard N, Lagache T, Blisnick T, et al. 2013. Intraflagellar transport proteins cycle between the flagellum and its base. J Cell Sci 126: 327-38.
-
(2013)
J Cell Sci
, vol.126
, pp. 327-338
-
-
Buisson, J.1
Chenouard, N.2
Lagache, T.3
Blisnick, T.4
-
20
-
-
84874616909
-
Avalanche-like behavior in ciliary import
-
Ludington WB, Wemmer KA, Lechtreck KF, Witman GB, et al. 2013. Avalanche-like behavior in ciliary import. Proc Natl Acad Sci USA 110: 3925-30.
-
(2013)
Proc Natl Acad Sci USA
, vol.110
, pp. 3925-3930
-
-
Ludington, W.B.1
Wemmer, K.A.2
Lechtreck, K.F.3
Witman, G.B.4
-
21
-
-
70449730897
-
Electron-tomographic analysis of intraflagellar transport particle trains in situ
-
Pigino G, Geimer S, Lanzavecchia S, Paccagnini E, et al. 2009. Electron-tomographic analysis of intraflagellar transport particle trains in situ. J Cell Biol 187: 135-48.
-
(2009)
J Cell Biol
, vol.187
, pp. 135-148
-
-
Pigino, G.1
Geimer, S.2
Lanzavecchia, S.3
Paccagnini, E.4
-
22
-
-
70449709536
-
Intraflagellar transport particle size scales inversely with flagellar length: revisiting the balance-point length control model
-
Engel BD, Ludington WB, Marshall WF. 2009. Intraflagellar transport particle size scales inversely with flagellar length: revisiting the balance-point length control model. J Cell Biol 187: 81-9.
-
(2009)
J Cell Biol
, vol.187
, pp. 81-89
-
-
Engel, B.D.1
Ludington, W.B.2
Marshall, W.F.3
-
23
-
-
84883111223
-
Molecular basis of tubulin transport within the cilium by IFT74 and IFT81
-
Bhogaraju S, Cajanek L, Fort C, Blisnick T, et al. 2013. Molecular basis of tubulin transport within the cilium by IFT74 and IFT81. Science 341: 1009-12.
-
(2013)
Science
, vol.341
, pp. 1009-1012
-
-
Bhogaraju, S.1
Cajanek, L.2
Fort, C.3
Blisnick, T.4
-
24
-
-
80054795016
-
Cryo-electron tomography reveals conserved features of doublet microtubules in flagella
-
Nicastro D, Fu X, Heuser T, Tso A, et al. 2011. Cryo-electron tomography reveals conserved features of doublet microtubules in flagella. Proc Natl Acad Sci USA 108: E845-53.
-
(2011)
Proc Natl Acad Sci USA
, vol.108
-
-
Nicastro, D.1
Fu, X.2
Heuser, T.3
Tso, A.4
-
25
-
-
0027098030
-
Polarity of flagellar assembly in Chlamydomonas
-
Johnson KA, Rosenbaum JL. 1992. Polarity of flagellar assembly in Chlamydomonas. J Cell Biol 119: 1605-11.
-
(1992)
J Cell Biol
, vol.119
, pp. 1605-1611
-
-
Johnson, K.A.1
Rosenbaum, J.L.2
-
26
-
-
0035851915
-
Intraflagellar transport balances continuous turnover of outer doublet microtubules: implications for flagellar length control
-
Marshall WF, Rosenbaum JL. 2001. Intraflagellar transport balances continuous turnover of outer doublet microtubules: implications for flagellar length control. J Cell Biol 155: 405-14.
-
(2001)
J Cell Biol
, vol.155
, pp. 405-414
-
-
Marshall, W.F.1
Rosenbaum, J.L.2
-
27
-
-
84890795557
-
A differential cargo-loading model of ciliary length regulation by IFT
-
Wren KN, Craft JM, Tritschler D, Schauer A, et al. 2013. A differential cargo-loading model of ciliary length regulation by IFT. Curr Biol 23: 2463-71.
-
(2013)
Curr Biol
, vol.23
, pp. 2463-2471
-
-
Wren, K.N.1
Craft, J.M.2
Tritschler, D.3
Schauer, A.4
-
28
-
-
0035839454
-
Flagellar protein dynamics in Chlamydomonas
-
Song L, Dentler W. 2001. Flagellar protein dynamics in Chlamydomonas. J Biol Chem 276: 29754-63.
-
(2001)
J Biol Chem
, vol.276
, pp. 29754-29763
-
-
Song, L.1
Dentler, W.2
-
29
-
-
0030730983
-
Synthesis and turnover of embryonic sea urchin ciliary proteins during selective inhibition of tubulin synthesis and assembly
-
Stephens RE. 1997. Synthesis and turnover of embryonic sea urchin ciliary proteins during selective inhibition of tubulin synthesis and assembly. Mol Biol Cell 8: 2187-98.
-
(1997)
Mol Biol Cell
, vol.8
, pp. 2187-2198
-
-
Stephens, R.E.1
-
30
-
-
1642382220
-
Intraflagellar transport (IFT) cargo: IFT transports flagellar precursors to the tip and turnover products to the cell body
-
Qin H, Diener DR, Geimer S, Cole DG, et al. 2004. Intraflagellar transport (IFT) cargo: IFT transports flagellar precursors to the tip and turnover products to the cell body. J Cell Biol 164: 255-66.
-
(2004)
J Cell Biol
, vol.164
, pp. 255-266
-
-
Qin, H.1
Diener, D.R.2
Geimer, S.3
Cole, D.G.4
-
31
-
-
79959931947
-
Intraflagellar transport delivers tubulin isotypes to sensory cilium middle and distal segments
-
Hao L, Thein M, Brust-Mascher I, Civelekoglu-Scholey G, et al. 2011. Intraflagellar transport delivers tubulin isotypes to sensory cilium middle and distal segments. Nat Cell Biol 13: 790-8.
-
(2011)
Nat Cell Biol
, vol.13
, pp. 790-798
-
-
Hao, L.1
Thein, M.2
Brust-Mascher, I.3
Civelekoglu-Scholey, G.4
-
32
-
-
43049146221
-
Implications for kinetochore-microtubule attachment from the structure of an engineered Ndc80 complex
-
Ciferri C, Pasqualato S, Screpanti E, Varetti G, et al. 2008. Implications for kinetochore-microtubule attachment from the structure of an engineered Ndc80 complex. Cell 133: 427-39.
-
(2008)
Cell
, vol.133
, pp. 427-439
-
-
Ciferri, C.1
Pasqualato, S.2
Screpanti, E.3
Varetti, G.4
-
33
-
-
0037106588
-
Calponin homology domains at a glance
-
Korenbaum E, Rivero F. 2002. Calponin homology domains at a glance. J Cell Sci 115: 3543-5.
-
(2002)
J Cell Sci
, vol.115
, pp. 3543-3545
-
-
Korenbaum, E.1
Rivero, F.2
-
34
-
-
84897463155
-
A divergent calponin homology (NN-CH) domain defines a novel family: implications for evolution of ciliary IFT complex B proteins
-
Press, doi: 10.1093/bioinformatics/btt661
-
Schou KB, Andersen JS, Pedersen LB. 2014. A divergent calponin homology (NN-CH) domain defines a novel family: implications for evolution of ciliary IFT complex B proteins. Bioinformatics, in press, doi: 10.1093/bioinformatics/btt661.
-
(2014)
Bioinformatics
-
-
Schou, K.B.1
Andersen, J.S.2
Pedersen, L.B.3
-
35
-
-
84876854722
-
Evolution of modular intraflagellar transport from a coatomer-like progenitor
-
van Dam TJP, Townsend MJ, Turk M, Schlessinger A, et al. 2013. Evolution of modular intraflagellar transport from a coatomer-like progenitor. Proc Natl Acad Sci USA 110: 6943-8.
-
(2013)
Proc Natl Acad Sci USA
, vol.110
, pp. 6943-6948
-
-
van Dam, T.J.P.1
Townsend, M.J.2
Turk, M.3
Schlessinger, A.4
-
36
-
-
0014518546
-
Flagellar elongation and shortening in Chlamydomonas: the use of cycloheximide and colchicine to study the synthesis and assembly of flagellar proteins
-
Rosenbaum JL, Moulder JE, Ringo DL. 1969. Flagellar elongation and shortening in Chlamydomonas: the use of cycloheximide and colchicine to study the synthesis and assembly of flagellar proteins. J Cell Biol 41: 600-19.
-
(1969)
J Cell Biol
, vol.41
, pp. 600-619
-
-
Rosenbaum, J.L.1
Moulder, J.E.2
Ringo, D.L.3
-
37
-
-
14844318060
-
The FLA3 KAP subunit is required for localization of kinesin-2 to the site of flagellar assembly and processive anterograde intraflagellar transport
-
Mueller J, Perrone CA, Bower R, Cole DG, et al. 2005. The FLA3 KAP subunit is required for localization of kinesin-2 to the site of flagellar assembly and processive anterograde intraflagellar transport. Mol Biol Cell 16: 1341-54.
-
(2005)
Mol Biol Cell
, vol.16
, pp. 1341-1354
-
-
Mueller, J.1
Perrone, C.A.2
Bower, R.3
Cole, D.G.4
-
38
-
-
23944450197
-
Intraflagellar transport (IFT) during assembly and disassembly of Chlamydomonas flagella
-
Dentler W. 2005. Intraflagellar transport (IFT) during assembly and disassembly of Chlamydomonas flagella. J Cell Biol 170: 649-59.
-
(2005)
J Cell Biol
, vol.170
, pp. 649-659
-
-
Dentler, W.1
-
39
-
-
11144339394
-
Flagellar length control system: testing a simple model based on intraflagellar transport and turnover
-
Marshall WF, Qin H, Rodrigo Brenni M, Rosenbaum JL. 2005. Flagellar length control system: testing a simple model based on intraflagellar transport and turnover. Mol Biol Cell 16: 270-8.
-
(2005)
Mol Biol Cell
, vol.16
, pp. 270-278
-
-
Marshall, W.F.1
Qin, H.2
Rodrigo Brenni, M.3
Rosenbaum, J.L.4
-
40
-
-
84889019584
-
Intraflagellar transport complex structure and cargo interactions
-
Bhogaraju S, Engel BD, Lorentzen E. 2013. Intraflagellar transport complex structure and cargo interactions. Cilia 2: 10.
-
(2013)
Cilia
, vol.2
, pp. 10
-
-
Bhogaraju, S.1
Engel, B.D.2
Lorentzen, E.3
-
41
-
-
84856343802
-
Architecture and function of IFT complex proteins in ciliogenesis
-
Taschner M, Bhogaraju S, Lorentzen E. 2012. Architecture and function of IFT complex proteins in ciliogenesis. Differentiation 83: S12-S22.
-
(2012)
Differentiation
, vol.83
-
-
Taschner, M.1
Bhogaraju, S.2
Lorentzen, E.3
-
42
-
-
0034604714
-
MIP-T3, a novel protein linking tumor necrosis factor receptor-associated factor 3 to the microtubule network
-
Ling L, Goeddel DV. 2000. MIP-T3, a novel protein linking tumor necrosis factor receptor-associated factor 3 to the microtubule network. J Biol Chem 275: 23852-60.
-
(2000)
J Biol Chem
, vol.275
, pp. 23852-23860
-
-
Ling, L.1
Goeddel, D.V.2
-
43
-
-
77953844836
-
Proteomic analysis reveals novel binding partners of MIP-T3 in human cells
-
Guo C-W, Xiong S, Liu G, Wang Y-F, et al. 2010. Proteomic analysis reveals novel binding partners of MIP-T3 in human cells. Proteomics 10: 2337-47.
-
(2010)
Proteomics
, vol.10
, pp. 2337-2347
-
-
Guo, C.-W.1
Xiong, S.2
Liu, G.3
Wang, Y.-F.4
-
44
-
-
81055144848
-
Qilin is essential for cilia assembly and normal kidney development in zebrafish
-
Li J, Sun Z. 2011. Qilin is essential for cilia assembly and normal kidney development in zebrafish. PLoS One 6: e27365.
-
(2011)
PLoS One
, vol.6
-
-
Li, J.1
Sun, Z.2
-
45
-
-
43149102968
-
Elipsa is an early determinant of ciliogenesis that links the IFT particle to membrane-associated small GTPase Rab8
-
Omori Y, Zhao C, Saras A, Mukhopadhyay S, et al. 2008. Elipsa is an early determinant of ciliogenesis that links the IFT particle to membrane-associated small GTPase Rab8. Nat Cell Biol 10: 437-4.
-
(2008)
Nat Cell Biol
, vol.10
, pp. 434-437
-
-
Omori, Y.1
Zhao, C.2
Saras, A.3
Mukhopadhyay, S.4
-
46
-
-
20144371855
-
The PKD protein qilin undergoes intraflagellar transport
-
Ou G, Qin H, Rosenbaum JL, Scholey JM. 2005. The PKD protein qilin undergoes intraflagellar transport. Curr Biol 15: R410-R411.
-
(2005)
Curr Biol
, vol.15
-
-
Ou, G.1
Qin, H.2
Rosenbaum, J.L.3
Scholey, J.M.4
-
47
-
-
55949094005
-
ODA16 aids axonemal outer row dynein assembly through an interaction with the intraflagellar transport machinery
-
Ahmed NT, Gao C, Lucker BF, Cole DG, et al. 2008. ODA16 aids axonemal outer row dynein assembly through an interaction with the intraflagellar transport machinery. J Cell Biol 183: 313-22.
-
(2008)
J Cell Biol
, vol.183
, pp. 313-322
-
-
Ahmed, N.T.1
Gao, C.2
Lucker, B.F.3
Cole, D.G.4
-
48
-
-
33847413590
-
Functional analysis of an individual IFT protein: IFT46 is required for transport of outer dynein arms into flagella
-
Hou Y, Qin H, Follit JA, Pazour GJ, et al. 2007. Functional analysis of an individual IFT protein: IFT46 is required for transport of outer dynein arms into flagella. J Cell Biol 176: 653-65.
-
(2007)
J Cell Biol
, vol.176
, pp. 653-665
-
-
Hou, Y.1
Qin, H.2
Follit, J.A.3
Pazour, G.J.4
-
49
-
-
84866371836
-
Polarity and asymmetry in the arrangement of dynein and related structures in the Chlamydomonas axoneme
-
Bui KH, Yagi T, Yamamoto R, Kamiya R, et al. 2012. Polarity and asymmetry in the arrangement of dynein and related structures in the Chlamydomonas axoneme. J Cell Biol 198: 913-25.
-
(2012)
J Cell Biol
, vol.198
, pp. 913-925
-
-
Bui, K.H.1
Yagi, T.2
Yamamoto, R.3
Kamiya, R.4
-
50
-
-
79953788888
-
The phosphorylation state of an aurora-like kinase marks the length of growing flagella in Chlamydomonas
-
Luo M, Cao M, Kan Y, Li G, et al. 2011. The phosphorylation state of an aurora-like kinase marks the length of growing flagella in Chlamydomonas. Curr Biol 21: 586-91.
-
(2011)
Curr Biol
, vol.21
, pp. 586-591
-
-
Luo, M.1
Cao, M.2
Kan, Y.3
Li, G.4
-
51
-
-
84880677763
-
Activation loop phosphorylation of a protein kinase is a molecular marker of organelle size that dynamically reports flagellar length
-
Cao M, Meng D, Wang L, Bei S, et al. 2013. Activation loop phosphorylation of a protein kinase is a molecular marker of organelle size that dynamically reports flagellar length. Proc Natl Acad Sci USA 110: 12337-42.
-
(2013)
Proc Natl Acad Sci USA
, vol.110
, pp. 12337-12342
-
-
Cao, M.1
Meng, D.2
Wang, L.3
Bei, S.4
-
52
-
-
33947231061
-
A CDK-related kinase regulates the length and assembly of flagella in Chlamydomonas
-
Tam LW, Wilson NF, Lefebvre PA. 2007. A CDK-related kinase regulates the length and assembly of flagella in Chlamydomonas. J Cell Biol 176: 819-29.
-
(2007)
J Cell Biol
, vol.176
, pp. 819-829
-
-
Tam, L.W.1
Wilson, N.F.2
Lefebvre, P.A.3
-
53
-
-
84889095194
-
The kinases LF4 and CNK2 control ciliary length by feedback regulation of assembly and disassembly rates
-
Hilton LK, Gunawardane K, Kim JW, Schwarz MC, et al. 2013. The kinases LF4 and CNK2 control ciliary length by feedback regulation of assembly and disassembly rates. Curr Biol 23: 2208-14.
-
(2013)
Curr Biol
, vol.23
, pp. 2208-2214
-
-
Hilton, L.K.1
Gunawardane, K.2
Kim, J.W.3
Schwarz, M.C.4
-
54
-
-
0038158086
-
A Novel MAP kinase regulates flagellar length in Chlamydomonas
-
Berman SA, Wilson NF, Haas NA, Lefebvre PA. 2003. A Novel MAP kinase regulates flagellar length in Chlamydomonas. Curr Biol 13: 1145-9.
-
(2003)
Curr Biol
, vol.13
, pp. 1145-1149
-
-
Berman, S.A.1
Wilson, N.F.2
Haas, N.A.3
Lefebvre, P.A.4
-
55
-
-
0141706698
-
IFT20 links kinesin II with a mammalian intraflagellar transport complex that is conserved in motile flagella and sensory cilia
-
Baker SA, Freeman K, Luby-Phelps K, Pazour GJ, et al. 2003. IFT20 links kinesin II with a mammalian intraflagellar transport complex that is conserved in motile flagella and sensory cilia. J Biol Chem 278: 34211-8.
-
(2003)
J Biol Chem
, vol.278
, pp. 34211-34218
-
-
Baker, S.A.1
Freeman, K.2
Luby-Phelps, K.3
Pazour, G.J.4
|