메뉴 건너뛰기




Volumn 39, Issue 10, 2014, Pages 4850-4856

Hydrogen generation from formic acid decomposition at room temperature using a NiAuPd alloy nanocatalyst

Author keywords

Alloy nanoparticles; Formic acid; Heterogeneous catalysis; Hydrogen generation; Nickel

Indexed keywords

ALLOY NANOPARTICLE; FORMIC ACID DECOMPOSITIONS; HYDROGEN GENERATIONS; HYDROGEN SELECTIVITY; HYDROGEN STORAGE MATERIALS; MOLAR CONTENT; NANO-CATALYST; ROOM TEMPERATURE;

EID: 84897921737     PISSN: 03603199     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.ijhydene.2013.12.148     Document Type: Article
Times cited : (129)

References (43)
  • 1
    • 0035891289 scopus 로고    scopus 로고
    • Hydrogen-storage materials for mobile applications
    • L. Schlapbach, and A. Zuttel Hydrogen-storage materials for mobile applications Nature 414 2001 353 358
    • (2001) Nature , vol.414 , pp. 353-358
    • Schlapbach, L.1    Zuttel, A.2
  • 2
    • 4043112177 scopus 로고    scopus 로고
    • Sustainable hydrogen production
    • J.A. Turner Sustainable hydrogen production Science 305 2004 972 974
    • (2004) Science , vol.305 , pp. 972-974
    • Turner, J.A.1
  • 3
    • 61649127550 scopus 로고    scopus 로고
    • Enhanced hydrogen storage on Li-dispersed carbon nanotibes
    • W. Liu, Y.H. Li, Q. Jiang, and E.J. Lavernia Enhanced hydrogen storage on Li-dispersed carbon nanotibes J Phys Chem C 113 2009 2028 2033
    • (2009) J Phys Chem C , vol.113 , pp. 2028-2033
    • Liu, W.1    Li, Y.H.2    Jiang, Q.3    Lavernia, E.J.4
  • 4
    • 84874708061 scopus 로고    scopus 로고
    • Low-temperature aqueous-phase methanol dehydrogenation to hydrogen and carbon dioxide
    • M. Nielsen, E. Alberico, W. Baumann, H.J. Drexler, H. Junge, and S. Gladiali et al. Low-temperature aqueous-phase methanol dehydrogenation to hydrogen and carbon dioxide Nature 495 2013 85 89
    • (2013) Nature , vol.495 , pp. 85-89
    • Nielsen, M.1    Alberico, E.2    Baumann, W.3    Drexler, H.J.4    Junge, H.5    Gladiali, S.6
  • 5
    • 76149130721 scopus 로고    scopus 로고
    • Monodisperse nickel nanoparticles and their catalysis in hydrolytic dehydrogenation of ammonia borane
    • Ö. Metin, V. Mazumder, S. Özkar, and S. Sun Monodisperse nickel nanoparticles and their catalysis in hydrolytic dehydrogenation of ammonia borane J Am Chem Soc 132 2010 1468 1469
    • (2010) J Am Chem Soc , vol.132 , pp. 1468-1469
    • Metin, Ö.1    Mazumder, V.2    Özkar, S.3    Sun, S.4
  • 6
    • 84865235247 scopus 로고    scopus 로고
    • Palladium silica nanosphere-catalyzed decomposition of formic acid for chemical hydrogen storage
    • M. Yadav, A.K. Singh, N. Tsumori, and Q. Xu Palladium silica nanosphere-catalyzed decomposition of formic acid for chemical hydrogen storage J Mater Chem 22 2012 19146 19150
    • (2012) J Mater Chem , vol.22 , pp. 19146-19150
    • Yadav, M.1    Singh, A.K.2    Tsumori, N.3    Xu, Q.4
  • 7
    • 47049083045 scopus 로고    scopus 로고
    • A viable hydrogen-storage system based on selective formic acid decomposition with a ruthenium catalyst
    • C. Fellay, P.J. Dyson, and G. Laurenczy A viable hydrogen-storage system based on selective formic acid decomposition with a ruthenium catalyst Angew Chem Int Ed 47 2008 3966 3968
    • (2008) Angew Chem Int Ed , vol.47 , pp. 3966-3968
    • Fellay, C.1    Dyson, P.J.2    Laurenczy, G.3
  • 8
    • 52949099180 scopus 로고    scopus 로고
    • Efficient hydrogen generation from organic chemical hydrides by using catalytic reactor on the basis of superheated liquid-film concept
    • Y. Saito, K. Aramaki, S. Hodoshima, M. Saito, A. Shono, and J. Kuwano et al. Efficient hydrogen generation from organic chemical hydrides by using catalytic reactor on the basis of superheated liquid-film concept Chem Eng Sci 63 2008 4935 4941
    • (2008) Chem Eng Sci , vol.63 , pp. 4935-4941
    • Saito, Y.1    Aramaki, K.2    Hodoshima, S.3    Saito, M.4    Shono, A.5    Kuwano, J.6
  • 9
    • 33745258721 scopus 로고    scopus 로고
    • Development of dehydrogenation catalyst for hydrogen generation in organic chemical hydride method
    • Y. Okada, E. Sasaki, E. Watanabe, S. Hyodo, and H. Nishijima Development of dehydrogenation catalyst for hydrogen generation in organic chemical hydride method Int J Hydrogen Energy 31 2006 1348 1356
    • (2006) Int J Hydrogen Energy , vol.31 , pp. 1348-1356
    • Okada, Y.1    Sasaki, E.2    Watanabe, E.3    Hyodo, S.4    Nishijima, H.5
  • 10
    • 80054918220 scopus 로고    scopus 로고
    • Hydrogen delivery through liquid organic hydrides: Considerations for a potential technology
    • A. Shukla, S. Karmakar, and R.B. Biniwale Hydrogen delivery through liquid organic hydrides: considerations for a potential technology Int J Hydrogen Energy 37 2012 3719 3726
    • (2012) Int J Hydrogen Energy , vol.37 , pp. 3719-3726
    • Shukla, A.1    Karmakar, S.2    Biniwale, R.B.3
  • 11
    • 79955797276 scopus 로고    scopus 로고
    • Acidic ideas for hydrogen storage
    • A. Boddien, and H. Junge Acidic ideas for hydrogen storage Nat nanotech 6 2011 265 266
    • (2011) Nat Nanotech , vol.6 , pp. 265-266
    • Boddien, A.1    Junge, H.2
  • 12
    • 78049255765 scopus 로고    scopus 로고
    • Catalytic generation of hydrogen from formic acid and its derivatives: Useful hydrogen storage materials
    • B. Loges, A. Boddien, F. Gärtner, H. Junge, and M. Beller Catalytic generation of hydrogen from formic acid and its derivatives: useful hydrogen storage materials Top Catal 53 2010 902 914
    • (2010) Top Catal , vol.53 , pp. 902-914
    • Loges, B.1    Boddien, A.2    Gärtner, F.3    Junge, H.4    Beller, M.5
  • 13
    • 77952893036 scopus 로고    scopus 로고
    • Liquid-phase chemical hydrogen storage: Catalytic hydrogen generation under ambient conditions
    • H.L. Jiang, S.K. Singh, J.M. Yan, X.B. Zhang, and Q. Xu Liquid-phase chemical hydrogen storage: catalytic hydrogen generation under ambient conditions ChemSusChem 3 2010 541 549
    • (2010) ChemSusChem , vol.3 , pp. 541-549
    • Jiang, H.L.1    Singh, S.K.2    Yan, J.M.3    Zhang, X.B.4    Xu, Q.5
  • 14
    • 77953317775 scopus 로고    scopus 로고
    • Hydrogen generation from formic acid and alcohols using homogeneous catalysts
    • T.C. Johnson, D.J. Morris, and M. Wills Hydrogen generation from formic acid and alcohols using homogeneous catalysts Chem Soc Rev 39 2010 81 88
    • (2010) Chem Soc Rev , vol.39 , pp. 81-88
    • Johnson, T.C.1    Morris, D.J.2    Wills, M.3
  • 15
    • 77956117359 scopus 로고    scopus 로고
    • Carbon dioxide and formic acid-the couple for environmental-friendly hydrogen storage?
    • S. Enthaler, J. von Langermann, and T. Schmidt Carbon dioxide and formic acid-the couple for environmental-friendly hydrogen storage? Energy Environ Sci 3 2010 1207 1217
    • (2010) Energy Environ Sci , vol.3 , pp. 1207-1217
    • Enthaler, S.1    Von Langermann, J.2    Schmidt, T.3
  • 16
    • 84870888171 scopus 로고    scopus 로고
    • Liquid-phase chemical hydrogen storage materials
    • M. Yadav, and Q. Xu Liquid-phase chemical hydrogen storage materials Energy Environ Sci 5 2012 9698 9725
    • (2012) Energy Environ Sci , vol.5 , pp. 9698-9725
    • Yadav, M.1    Xu, Q.2
  • 17
    • 77950295284 scopus 로고    scopus 로고
    • Nanocrystalline intermetallics on mesoporous carbon for direct formic acid fuel cell anodes
    • X. Ji, K.T. Lee, R. Holden, L. Zhang, J. Zhang, and G.A. Botton et al. Nanocrystalline intermetallics on mesoporous carbon for direct formic acid fuel cell anodes Nat Chem 2 2010 286 293
    • (2010) Nat Chem , vol.2 , pp. 286-293
    • Ji, X.1    Lee, K.T.2    Holden, R.3    Zhang, L.4    Zhang, J.5    Botton, G.A.6
  • 19
    • 70350599533 scopus 로고    scopus 로고
    • Continuous hydrogen generation from formic acid: Highly active and stable ruthenium catalysts
    • A. Boddien, B. Loges, H. Junge, F. Gärtner, J.R. Noyes, and M. Beller Continuous hydrogen generation from formic acid: highly active and stable ruthenium catalysts Adv Synth Catal 351 2009 2517 2520
    • (2009) Adv Synth Catal , vol.351 , pp. 2517-2520
    • Boddien, A.1    Loges, B.2    Junge, H.3    Gärtner, F.4    Noyes, J.R.5    Beller, M.6
  • 21
    • 79955859884 scopus 로고    scopus 로고
    • Hydrogen production from formic acid decomposition at room temperature using a Ag-Pd core-shell nanocatalyst
    • K. Tedsree, T. Li, S. Jones, C.W.A. Chan, K.M.K. Yu, and P.A.J. Bagot et al. Hydrogen production from formic acid decomposition at room temperature using a Ag-Pd core-shell nanocatalyst Nat nanotech 6 2011 302 307
    • (2011) Nat Nanotech , vol.6 , pp. 302-307
    • Tedsree, K.1    Li, T.2    Jones, S.3    Chan, C.W.A.4    Yu, K.M.K.5    Bagot, P.A.J.6
  • 22
    • 47949133010 scopus 로고    scopus 로고
    • High-quality hydrogen from the catalyzed decomposition of formic acid by Pd-Au/C and Pd-Ag/C
    • X. Zhou, Y. Huang, W. Xing, C. Liu, J. Liao, and T. Lu High-quality hydrogen from the catalyzed decomposition of formic acid by Pd-Au/C and Pd-Ag/C Chem Commun 2008 3540 3542
    • (2008) Chem Commun , pp. 3540-3542
    • Zhou, X.1    Huang, Y.2    Xing, W.3    Liu, C.4    Liao, J.5    Lu, T.6
  • 23
    • 71049189692 scopus 로고    scopus 로고
    • Formic acid dehydrogenation on Au-based catalysts at near-ambient temperatures
    • M. Ojeda, and E. Iglesia Formic acid dehydrogenation on Au-based catalysts at near-ambient temperatures Angew Chem Int Ed 48 2009 4800 4803
    • (2009) Angew Chem Int Ed , vol.48 , pp. 4800-4803
    • Ojeda, M.1    Iglesia, E.2
  • 24
    • 72649089180 scopus 로고    scopus 로고
    • Low activation energy dehydrogenation of aqueous formic acid on platinum-ruthenium-bismuth oxide at near ambient temperature and pressue
    • S.W. Ting, S. Cheng, K.Y. Tsang, Nvd Laak, and K.Y. Chan Low activation energy dehydrogenation of aqueous formic acid on platinum-ruthenium-bismuth oxide at near ambient temperature and pressue Chem Commun 2009 7333 7335
    • (2009) Chem Commun , pp. 7333-7335
    • Ting, S.W.1    Cheng, S.2    Tsang, K.Y.3    Laak, N.4    Chan, K.Y.5
  • 25
    • 79961162183 scopus 로고    scopus 로고
    • Synergistic catalysis of metal-organic framewoek-immobilized Au-Pd nanoparticles in dehydrogenation of formic acid for chemical hydrogen storage
    • X. Gu, Z.H. Lu, H.L. Jiang, T. Akita, and Q. Xu Synergistic catalysis of metal-organic framewoek-immobilized Au-Pd nanoparticles in dehydrogenation of formic acid for chemical hydrogen storage J Am Chem Soc 133 2011 11822 11825
    • (2011) J Am Chem Soc , vol.133 , pp. 11822-11825
    • Gu, X.1    Lu, Z.H.2    Jiang, H.L.3    Akita, T.4    Xu, Q.5
  • 26
    • 84861651733 scopus 로고    scopus 로고
    • Efficient subnanometric gold-catalyzed hydrogen generation via formic acid decomposition under ambient conditions
    • Q.Y. Bi, X.L. Du, Y.M. Liu, Y. Cao, H.Y. He, and K.N. Fan Efficient subnanometric gold-catalyzed hydrogen generation via formic acid decomposition under ambient conditions J Am Chem Soc 134 2012 8926 8933
    • (2012) J Am Chem Soc , vol.134 , pp. 8926-8933
    • Bi, Q.Y.1    Du, X.L.2    Liu, Y.M.3    Cao, Y.4    He, H.Y.5    Fan, K.N.6
  • 27
    • 84862205309 scopus 로고    scopus 로고
    • Strong metal-molecular support interaction (SMMSI): Amine-functionalized gold nanoparticles encapsulated in silica nanospheres highly active for catalytic decomposition of formic acid
    • M. Yadav, T. Akita, N. Tsumori, and Q. Xu Strong metal-molecular support interaction (SMMSI): amine-functionalized gold nanoparticles encapsulated in silica nanospheres highly active for catalytic decomposition of formic acid J Mater Chem 22 2012 12582 12586
    • (2012) J Mater Chem , vol.22 , pp. 12582-12586
    • Yadav, M.1    Akita, T.2    Tsumori, N.3    Xu, Q.4
  • 28
    • 84859322266 scopus 로고    scopus 로고
    • Improved hydrogen production from formic acid on a Pd/C catalyst doped by potassium
    • D.A. Bulushev, L. Jia, S. Beloshapkin, and J.R.H. Ross Improved hydrogen production from formic acid on a Pd/C catalyst doped by potassium Chem Commun 48 2012 4184 4186
    • (2012) Chem Commun , vol.48 , pp. 4184-4186
    • Bulushev, D.A.1    Jia, L.2    Beloshapkin, S.3    Ross, J.R.H.4
  • 29
    • 84866060179 scopus 로고    scopus 로고
    • Pd/C synthesized with citric acid: An efficient catalyst for hydrogen generation from formic acid/sodium formate
    • Z.L. Wang, J.M. Yan, H.L. Wang, Y. Ping, and Q. Jiang Pd/C synthesized with citric acid: an efficient catalyst for hydrogen generation from formic acid/sodium formate Sci Rep 2 2012 598
    • (2012) Sci Rep , vol.2 , pp. 598
    • Wang, Z.L.1    Yan, J.M.2    Wang, H.L.3    Ping, Y.4    Jiang, Q.5
  • 30
    • 84875330481 scopus 로고    scopus 로고
    • Monodisperse AgPd alloy nanoparticles and their superior catalysis for the dehydrogenation of formic acid
    • S. Zhang, Ö. Metin, D. Su, and S. Sun Monodisperse AgPd alloy nanoparticles and their superior catalysis for the dehydrogenation of formic acid Angew Chem Int Ed 52 2013 3681 3684
    • (2013) Angew Chem Int Ed , vol.52 , pp. 3681-3684
    • Zhang, S.1    Metin, Ö.2    Su, D.3    Sun, S.4
  • 31
    • 84876275360 scopus 로고    scopus 로고
    • An efficient CoAuPd/C catalyst for hydrogen generation from formic acid at room temperature
    • Z.L. Wang, J.M. Yan, Y. Ping, H.L. Wang, W.T. Zheng, and Q. Jiang An efficient CoAuPd/C catalyst for hydrogen generation from formic acid at room temperature Angew Chem Int Ed 52 2013 4406 4409
    • (2013) Angew Chem Int Ed , vol.52 , pp. 4406-4409
    • Wang, Z.L.1    Yan, J.M.2    Ping, Y.3    Wang, H.L.4    Zheng, W.T.5    Jiang, Q.6
  • 32
    • 84879141847 scopus 로고    scopus 로고
    • Pd and Pd-Ag nanoparticles within a macroreticular basic resin: An efficient catalyst for hydrogen production from formic acid decomposition
    • K. Mori, M. Dojo, and H. Yamashita Pd and Pd-Ag nanoparticles within a macroreticular basic resin: an efficient catalyst for hydrogen production from formic acid decomposition ACS Catal 3 2013 114 119
    • (2013) ACS Catal , vol.3 , pp. 114-119
    • Mori, K.1    Dojo, M.2    Yamashita, H.3
  • 33
    • 84884304612 scopus 로고    scopus 로고
    • 0.9/rGO: An efficient catalyst for hydrogen generation from formic acid/sodium formate
    • 0.9/rGO: an efficient catalyst for hydrogen generation from formic acid/sodium formate J Mater Chem A 1 2013 12188 12191
    • (2013) J Mater Chem A , vol.1 , pp. 12188-12191
    • Ping, Y.1    Yan, J.M.2    Wang, Z.L.3    Wang, H.L.4    Jiang, Q.5
  • 34
    • 84863227602 scopus 로고    scopus 로고
    • Highly dispersed surfactant-free nickel nanoparticles and their remarkable catalytic activity in hydrolysis of ammonia borane for hydrogen generation
    • P.Z. Li, A. Aijaz, and Q. Xu Highly dispersed surfactant-free nickel nanoparticles and their remarkable catalytic activity in hydrolysis of ammonia borane for hydrogen generation Angew Chem Int Ed 51 2012 6753 6756
    • (2012) Angew Chem Int Ed , vol.51 , pp. 6753-6756
    • Li, P.Z.1    Aijaz, A.2    Xu, Q.3
  • 35
    • 77956023296 scopus 로고    scopus 로고
    • Bimetallic nickel-iridium nanocatalysts for hydrogen generation by decomposition of hydrous hydrazine
    • S.K. Singh, and Q. Xu Bimetallic nickel-iridium nanocatalysts for hydrogen generation by decomposition of hydrous hydrazine Chem Commun 46 2010 6545 6547
    • (2010) Chem Commun , vol.46 , pp. 6545-6547
    • Singh, S.K.1    Xu, Q.2
  • 36
    • 77954138010 scopus 로고    scopus 로고
    • Bimetallic Ni-Pt nanocatalysts for selective decomposition of hydrazine in aqueous solution to hydrogen at room temperature for chemical hydrogen storage
    • S.K. Singh, and Q. Xu Bimetallic Ni-Pt nanocatalysts for selective decomposition of hydrazine in aqueous solution to hydrogen at room temperature for chemical hydrogen storage Inorg Chem 49 2010 6148 6152
    • (2010) Inorg Chem , vol.49 , pp. 6148-6152
    • Singh, S.K.1    Xu, Q.2
  • 37
    • 77953064240 scopus 로고    scopus 로고
    • One-pot protocol for Au-based hybrid magnetic nanostructures via a noble-metal-induced reduction process
    • D. Wang, and Y. Li One-pot protocol for Au-based hybrid magnetic nanostructures via a noble-metal-induced reduction process J Am Chem Soc 132 2010 6280 6281
    • (2010) J Am Chem Soc , vol.132 , pp. 6280-6281
    • Wang, D.1    Li, Y.2
  • 38
    • 79952167222 scopus 로고    scopus 로고
    • Bimetallic nanocrystals: Liquid-phase synthesis and catalytic applications
    • D. Wang, and Y. Li Bimetallic nanocrystals: liquid-phase synthesis and catalytic applications Adv Mater 23 2011 1044 1060
    • (2011) Adv Mater , vol.23 , pp. 1044-1060
    • Wang, D.1    Li, Y.2
  • 39
    • 80052581247 scopus 로고    scopus 로고
    • Atomic-distribution-dependent electrocatalytic activity of Au-Pd bimetallic nanocrystals
    • J.W. Hong, D. Kim, Y.W. Lee, M. Kim, S.W. Kang, and S.W. Han Atomic-distribution-dependent electrocatalytic activity of Au-Pd bimetallic nanocrystals Angew Chem Int Ed 50 2011 8876 8881
    • (2011) Angew Chem Int Ed , vol.50 , pp. 8876-8881
    • Hong, J.W.1    Kim, D.2    Lee, Y.W.3    Kim, M.4    Kang, S.W.5    Han, S.W.6
  • 40
    • 80053318319 scopus 로고    scopus 로고
    • Synthesis of ultrathin FePtPd nanowires and their use as catalysts for methanol reaction
    • S. Guo, S. Zhang, X. Sun, and S. Sun Synthesis of ultrathin FePtPd nanowires and their use as catalysts for methanol reaction J Am Chem Soc 133 2011 15354 15357
    • (2011) J Am Chem Soc , vol.133 , pp. 15354-15357
    • Guo, S.1    Zhang, S.2    Sun, X.3    Sun, S.4
  • 41
    • 83055161393 scopus 로고    scopus 로고
    • Noble-metal-free bimetallic nanoparticle-catalyzed selective hydrogen generation from hydrous hydrazine for chemical hydrogen storage
    • S.K. Singh, A.K. Singh, K. Aranishi, and Q. Xu Noble-metal-free bimetallic nanoparticle-catalyzed selective hydrogen generation from hydrous hydrazine for chemical hydrogen storage J Am Chem Soc 133 2011 19638 19641
    • (2011) J Am Chem Soc , vol.133 , pp. 19638-19641
    • Singh, S.K.1    Singh, A.K.2    Aranishi, K.3    Xu, Q.4
  • 42
    • 84885121829 scopus 로고    scopus 로고
    • Au@Pd core-shell nanoclusters growing on nitrogen doped mildly reduced graphene oxide with enhanced catalytic performance for hydrogen generation from formic acid
    • Z.L. Wang, J.M. Yan, H.L. Wang, Y. Ping, and Q. Jiang Au@Pd core-shell nanoclusters growing on nitrogen doped mildly reduced graphene oxide with enhanced catalytic performance for hydrogen generation from formic acid J Mater Chem A 1 2013 12721 12725
    • (2013) J Mater Chem A , vol.1 , pp. 12721-12725
    • Wang, Z.L.1    Yan, J.M.2    Wang, H.L.3    Ping, Y.4    Jiang, Q.5
  • 43
    • 0000094780 scopus 로고
    • Environmental impact of fuel cell technology
    • K.V. Kordesch, and G.R. Simader Environmental impact of fuel cell technology Chem Rev 95 1995 191 207
    • (1995) Chem Rev , vol.95 , pp. 191-207
    • Kordesch, K.V.1    Simader, G.R.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.