메뉴 건너뛰기




Volumn 5, Issue 2, 2014, Pages 156-169

A three-stage unsupervised dimension reduction method for text clustering

Author keywords

Dimension reduction; Feature extraction; Feature selection; Sparsity; Text clustering; Three stage model

Indexed keywords

DIMENSION REDUCTION; DIMENSION REDUCTION METHOD; DIMENSION REDUCTION MODEL; FEATURE SUBSPACE; IMPROVE PERFORMANCE; PRE-PROCESSING STEP; SPARSITY; TEXT CLUSTERING;

EID: 84897628823     PISSN: 18777503     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.jocs.2013.11.007     Document Type: Article
Times cited : (51)

References (43)
  • 2
    • 77955594676 scopus 로고    scopus 로고
    • A two-stage approach for relevant gene selection for cancer classification
    • Bala R., Agrawal R. A two-stage approach for relevant gene selection for cancer classification. IADIS European Conference Data Mining 2009, 127-132.
    • (2009) IADIS European Conference Data Mining , pp. 127-132
    • Bala, R.1    Agrawal, R.2
  • 4
    • 84936824188 scopus 로고
    • Word association norm, mutual information and lexicography
    • Church K., Hanks P. Word association norm, mutual information and lexicography. Computational Linguistics 1990, 16:22-29.
    • (1990) Computational Linguistics , vol.16 , pp. 22-29
    • Church, K.1    Hanks, P.2
  • 8
    • 84863666181 scopus 로고    scopus 로고
    • Efficient feature selection filters for high-dimensional data
    • Ferreira A., Figueired M. Efficient feature selection filters for high-dimensional data. Pattern Recognition Letters 2012, 33:1794-1804.
    • (2012) Pattern Recognition Letters , vol.33 , pp. 1794-1804
    • Ferreira, A.1    Figueired, M.2
  • 9
    • 81855161547 scopus 로고    scopus 로고
    • Feature subset selection wrapper based on mutual information and rough sets
    • Foithong S., Pinngern O., Attachoo B. Feature subset selection wrapper based on mutual information and rough sets. Expert Systems with Applications 2012, 39:574-584.
    • (2012) Expert Systems with Applications , vol.39 , pp. 574-584
    • Foithong, S.1    Pinngern, O.2    Attachoo, B.3
  • 12
    • 0032729435 scopus 로고    scopus 로고
    • Exploring expression data: Identification and analysis of coexpressed genes
    • Heyer L., Kruglyak S., Yooseph S. Exploring expression data: Identification and analysis of coexpressed genes. Genome Research 1999, 9:1106-1115.
    • (1999) Genome Research , vol.9 , pp. 1106-1115
    • Heyer, L.1    Kruglyak, S.2    Yooseph, S.3
  • 13
    • 79952454670 scopus 로고    scopus 로고
    • Hybrid feature selection by combining filters and wrappers
    • Hsu H., Hsieh C., Lu M. Hybrid feature selection by combining filters and wrappers. Expert Systems with Applications 2011, 38:8144-8150.
    • (2011) Expert Systems with Applications , vol.38 , pp. 8144-8150
    • Hsu, H.1    Hsieh, C.2    Lu, M.3
  • 14
    • 0027002164 scopus 로고
    • The feature selection problem: traditional methods and a new algorithm
    • AAAI Press and MIT Press
    • Kira K., Rendell L. The feature selection problem: traditional methods and a new algorithm. Association for the Advancement of Artificial Intelligence 1992, 129-134. AAAI Press and MIT Press.
    • (1992) Association for the Advancement of Artificial Intelligence , pp. 129-134
    • Kira, K.1    Rendell, L.2
  • 15
    • 0031381525 scopus 로고    scopus 로고
    • Wrappers for feature subset selection
    • Kohavi R., John G. Wrappers for feature subset selection. Artificial Intelligence 1997, 97:273-324.
    • (1997) Artificial Intelligence , vol.97 , pp. 273-324
    • Kohavi, R.1    John, G.2
  • 16
    • 84992726552 scopus 로고
    • Estimating attributes: analysis and extensions of relief
    • Springer-Verlag
    • Kononenko I. Estimating attributes: analysis and extensions of relief. Proc. European Conference on Machine Learning 1994, 171-182). Springer-Verlag.
    • (1994) Proc. European Conference on Machine Learning , pp. 171-182
    • Kononenko, I.1
  • 18
    • 0003608388 scopus 로고
    • Sage University Paper series on Quantitative Application in the Social Sciences
    • Kruskal J.M.W. Multidimensional Scaling 1978, Sage University Paper series on Quantitative Application in the Social Sciences.
    • (1978) Multidimensional Scaling
    • Kruskal, J.M.W.1
  • 22
    • 80052960992 scopus 로고    scopus 로고
    • A two-stage feature selection method for text categorization
    • Menga J., Lin H., Yu Y. A two-stage feature selection method for text categorization. Knowledge-Based Systems 2011, 62:2793-2800.
    • (2011) Knowledge-Based Systems , vol.62 , pp. 2793-2800
    • Menga, J.1    Lin, H.2    Yu, Y.3
  • 23
    • 0037375142 scopus 로고    scopus 로고
    • Feature selection on hierarchy of web documents
    • Mladenic D., Grobelnik M. Feature selection on hierarchy of web documents. Decision Support Systems 2003, 35:45-87.
    • (2003) Decision Support Systems , vol.35 , pp. 45-87
    • Mladenic, D.1    Grobelnik, M.2
  • 24
    • 0000325341 scopus 로고
    • On lines and planes of closest filt to systems of points in space
    • Pearson K. On lines and planes of closest filt to systems of points in space. Philosophical Magazine 1901, 1:559-572.
    • (1901) Philosophical Magazine , vol.1 , pp. 559-572
    • Pearson, K.1
  • 25
    • 33744584654 scopus 로고
    • Induction of decision tree
    • Quinlan J. Induction of decision tree. Machine learning 1986, 1:81-106.
    • (1986) Machine learning , vol.1 , pp. 81-106
    • Quinlan, J.1
  • 26
  • 27
    • 35748932917 scopus 로고    scopus 로고
    • A review of feature selection techniques in bioinformatics
    • Saeys Y., Inza I., Larranaga P. A review of feature selection techniques in bioinformatics. Bioinformatics 2007, 23:2507-2517.
    • (2007) Bioinformatics , vol.23 , pp. 2507-2517
    • Saeys, Y.1    Inza, I.2    Larranaga, P.3
  • 29
    • 0036565280 scopus 로고    scopus 로고
    • Mercer kernel-based clustering in feature space
    • Girolami M. Mercer kernel-based clustering in feature space. IEEE Transactions on Neural Networks 2002, 13:780-784.
    • (2002) IEEE Transactions on Neural Networks , vol.13 , pp. 780-784
    • Girolami, M.1
  • 32
    • 27944506780 scopus 로고    scopus 로고
    • Systems Neurobiology Laboratory, University of California at San Diego
    • Shlens J. A tutorial on principal component analysis 2005, Systems Neurobiology Laboratory, University of California at San Diego.
    • (2005) A tutorial on principal component analysis
    • Shlens, J.1
  • 33
    • 67349192958 scopus 로고    scopus 로고
    • Genetic algorithm for text clustering based on latent semantic indexing
    • Song W., Park S. Genetic algorithm for text clustering based on latent semantic indexing. Computers and Mathematics with Applications 2009, 57:1901-1907.
    • (2009) Computers and Mathematics with Applications , vol.57 , pp. 1901-1907
    • Song, W.1    Park, S.2
  • 35
    • 84863882582 scopus 로고    scopus 로고
    • A hybrid system based on information gain and principal component analysis for the classification of transcranial doppler signals
    • Uguz H. A hybrid system based on information gain and principal component analysis for the classification of transcranial doppler signals. Computer Methods and Programs in Biomedicine 2011, 107:598-609.
    • (2011) Computer Methods and Programs in Biomedicine , vol.107 , pp. 598-609
    • Uguz, H.1
  • 36
    • 80955181170 scopus 로고    scopus 로고
    • A two-stage feature selection method for text categorization by using information gain, principal component analysis and genetic algorithm
    • Uguz H. A two-stage feature selection method for text categorization by using information gain, principal component analysis and genetic algorithm. Knowledge-Based Systems 2012, 24:1024-1032.
    • (2012) Knowledge-Based Systems , vol.24 , pp. 1024-1032
    • Uguz, H.1
  • 37
    • 77956611003 scopus 로고    scopus 로고
    • Mr2pso: a maximum relevance minimum redundancy feature selection method based on swarm intelligence for support vector machine classification
    • Unler A., Murat A., Chinnam R. mr2pso: a maximum relevance minimum redundancy feature selection method based on swarm intelligence for support vector machine classification. Information Sciences 2011, 181:4625-4641.
    • (2011) Information Sciences , vol.181 , pp. 4625-4641
    • Unler, A.1    Murat, A.2    Chinnam, R.3
  • 38
    • 0042198967 scopus 로고    scopus 로고
    • Feature extraction and dimensionality reduction algorithms and their applications in vowel recognition
    • Wang X., Paliwal K. Feature extraction and dimensionality reduction algorithms and their applications in vowel recognition. Pattern Recognition 2003, 36:2429-2439.
    • (2003) Pattern Recognition , vol.36 , pp. 2429-2439
    • Wang, X.1    Paliwal, K.2
  • 41
    • 0014976008 scopus 로고
    • Graph-theoretical methods for detecting and describing getalt clusters
    • Zahn C. Graph-theoretical methods for detecting and describing getalt clusters. IEEE Transactions on Computers 1971, 20:68-86.
    • (1971) IEEE Transactions on Computers , vol.20 , pp. 68-86
    • Zahn, C.1
  • 43
    • 0028468293 scopus 로고
    • Using mutual information for selecting features in supervised neural net learning
    • Battiti R. Using mutual information for selecting features in supervised neural net learning. IEEE Transactions on Neural Networks 1994, 5:537-550.
    • (1994) IEEE Transactions on Neural Networks , vol.5 , pp. 537-550
    • Battiti, R.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.