메뉴 건너뛰기




Volumn 107, Issue 3, 2012, Pages 598-609

A hybrid system based on information gain and principal component analysis for the classification of transcranial Doppler signals

Author keywords

Discrete wavelet transform; Feature selection; Information gain; Principal component analysis; Support vector machine

Indexed keywords

BLOOD FLOW VELOCITY; BRAIN DISEASE; CLASSIFICATION EFFICIENCY; DIMENSION REDUCTION; DIMENSION REDUCTION METHOD; FEATURE RANKING; FEATURE SPACE; HEALTHY PEOPLE; HYBRID FEATURES; INFORMATION GAIN; PCA METHOD; TRANSCRANIAL DOPPLER;

EID: 84863882582     PISSN: 01692607     EISSN: 18727565     Source Type: Journal    
DOI: 10.1016/j.cmpb.2011.03.013     Document Type: Article
Times cited : (34)

References (49)
  • 2
    • 32644478414 scopus 로고    scopus 로고
    • Early transcranial Doppler after subarachnoid hemorrhage: clinical and radiological correlations
    • Miranda P., Lagares A., Alen J., Perez A., Arrese I., Lobato R.D. Early transcranial Doppler after subarachnoid hemorrhage: clinical and radiological correlations. Surgical Neurology 2006, 65:247-252.
    • (2006) Surgical Neurology , vol.65 , pp. 247-252
    • Miranda, P.1    Lagares, A.2    Alen, J.3    Perez, A.4    Arrese, I.5    Lobato, R.D.6
  • 3
    • 36148937929 scopus 로고    scopus 로고
    • Comparison of neuro-fuzzy systems for classification of transcranial Doppler signals with their chaotic invariant measures
    • Ozturk A., Arslan A., Hardalac F. Comparison of neuro-fuzzy systems for classification of transcranial Doppler signals with their chaotic invariant measures. Expert Systems with Applications 2008, 34:1044-1055.
    • (2008) Expert Systems with Applications , vol.34 , pp. 1044-1055
    • Ozturk, A.1    Arslan, A.2    Hardalac, F.3
  • 4
    • 0037395444 scopus 로고    scopus 로고
    • Classification of transcranial Doppler signals using artificial neural network
    • Serhatlioĝlu S., Hardalaç F., Güler I. Classification of transcranial Doppler signals using artificial neural network. Journal of Medical Systems 2003, 27(2):205-214.
    • (2003) Journal of Medical Systems , vol.27 , Issue.2 , pp. 205-214
    • Serhatlioĝlu, S.1    Hardalaç, F.2    Güler, I.3
  • 5
    • 0036842317 scopus 로고    scopus 로고
    • Comparison of FFT and adaptive ARMA methods in transcranial Doppler signals recorded from the cerebral vessels
    • Guler I., Hardalac F., Kaymaz M. Comparison of FFT and adaptive ARMA methods in transcranial Doppler signals recorded from the cerebral vessels. Computers in Biology and Medicine 2002, 32:445-453.
    • (2002) Computers in Biology and Medicine , vol.32 , pp. 445-453
    • Guler, I.1    Hardalac, F.2    Kaymaz, M.3
  • 6
    • 44949256249 scopus 로고    scopus 로고
    • A biomedical system based on fuzzy discrete hidden Markov model for the diagnosis of the brain diseases
    • Uĝuz H., öztürk A., Saraçoĝlu R., Arslan A. A biomedical system based on fuzzy discrete hidden Markov model for the diagnosis of the brain diseases. Expert Systems with Applications 2008, 35(3):1104-1114.
    • (2008) Expert Systems with Applications , vol.35 , Issue.3 , pp. 1104-1114
    • Uĝuz, H.1    öztürk, A.2    Saraçoĝlu, R.3    Arslan, A.4
  • 7
    • 77949485946 scopus 로고    scopus 로고
    • A new approach based on discrete hidden Markov model using Rocchio algorithm for the diagnosis of the brain diseases
    • Uĝuz H., Arslan A. A new approach based on discrete hidden Markov model using Rocchio algorithm for the diagnosis of the brain diseases. Digital Signal Processing 2010, 20(3):923-934.
    • (2010) Digital Signal Processing , vol.20 , Issue.3 , pp. 923-934
    • Uĝuz, H.1    Arslan, A.2
  • 9
    • 6444240833 scopus 로고    scopus 로고
    • ECG beat classifier designed by combined neural network model
    • Güler I., übeyli E.D. ECG beat classifier designed by combined neural network model. Pattern Recognition 2005, 38:199-208.
    • (2005) Pattern Recognition , vol.38 , pp. 199-208
    • Güler, I.1    übeyli, E.D.2
  • 10
    • 33846417971 scopus 로고    scopus 로고
    • Combined image compression and denoising using wavelets
    • Bruni V., Vitulano D. Combined image compression and denoising using wavelets. Signal Processing: Image Communication 2007, 22(1):86-101.
    • (2007) Signal Processing: Image Communication , vol.22 , Issue.1 , pp. 86-101
    • Bruni, V.1    Vitulano, D.2
  • 11
    • 33746872244 scopus 로고    scopus 로고
    • Image coding based on wavelet transform and uniform scalar dead zone quantizer
    • Chen J., Zhang Y., Shi X. Image coding based on wavelet transform and uniform scalar dead zone quantizer. Signal Processing: Image Communication 2006, 21(7):562-572.
    • (2006) Signal Processing: Image Communication , vol.21 , Issue.7 , pp. 562-572
    • Chen, J.1    Zhang, Y.2    Shi, X.3
  • 12
    • 56349099610 scopus 로고    scopus 로고
    • Fault gear identification using vibration signal with discrete wavelet transform technique and fuzzy-logic inference
    • Wu J.-D., Hsu C.-C. Fault gear identification using vibration signal with discrete wavelet transform technique and fuzzy-logic inference. Expert Systems with Applications 2009, 36(2):3785-3794.
    • (2009) Expert Systems with Applications , vol.36 , Issue.2 , pp. 3785-3794
    • Wu, J.-D.1    Hsu, C.-C.2
  • 13
    • 38649101533 scopus 로고    scopus 로고
    • Energy and entropy-based feature extraction for location fault on transmission lines by using neural network and wavelet packet decomposition
    • Ekici S., Yildirim S., Poyraz M. Energy and entropy-based feature extraction for location fault on transmission lines by using neural network and wavelet packet decomposition. Expert Systems with Applications 2008, 34:2937-2944.
    • (2008) Expert Systems with Applications , vol.34 , pp. 2937-2944
    • Ekici, S.1    Yildirim, S.2    Poyraz, M.3
  • 14
    • 7244258874 scopus 로고    scopus 로고
    • Wavelet-based neural network for power disturbance recognition and classification
    • Gaing X.L. Wavelet-based neural network for power disturbance recognition and classification. IEEE Transactions on Power Delivery 2004, 19:1560-1568.
    • (2004) IEEE Transactions on Power Delivery , vol.19 , pp. 1560-1568
    • Gaing, X.L.1
  • 16
    • 0037683438 scopus 로고    scopus 로고
    • An intelligent system for diagnosis of the heart valve diseases with wavelet packet neural Networks
    • Turkoglu I., Arslan A., Ilkay E. An intelligent system for diagnosis of the heart valve diseases with wavelet packet neural Networks. Computers in Biology and Medicine 2003, 33:319-331.
    • (2003) Computers in Biology and Medicine , vol.33 , pp. 319-331
    • Turkoglu, I.1    Arslan, A.2    Ilkay, E.3
  • 17
    • 58549111381 scopus 로고    scopus 로고
    • Combined neural network model employing wavelet coefficients for EEG signals classification
    • Übeyli E.D. Combined neural network model employing wavelet coefficients for EEG signals classification. Digital Signal Processing 2009, 19(2):297-308.
    • (2009) Digital Signal Processing , vol.19 , Issue.2 , pp. 297-308
    • Übeyli, E.D.1
  • 18
    • 58249098813 scopus 로고    scopus 로고
    • Heart sound reproduction based on neural network classification of cardiac valve disorders using wavelet transforms of PCGs signal
    • Babaei S., Geranmayeh A. Heart sound reproduction based on neural network classification of cardiac valve disorders using wavelet transforms of PCGs signal. Computers in Biology and Medicine 2009, 39(1):8-15.
    • (2009) Computers in Biology and Medicine , vol.39 , Issue.1 , pp. 8-15
    • Babaei, S.1    Geranmayeh, A.2
  • 19
    • 33751396389 scopus 로고    scopus 로고
    • EEG signal classification using wavelet feature extraction and a mixture of expert model
    • Subasi A. EEG signal classification using wavelet feature extraction and a mixture of expert model. Expert Systems with Applications 2007, 32(4):1084-1093.
    • (2007) Expert Systems with Applications , vol.32 , Issue.4 , pp. 1084-1093
    • Subasi, A.1
  • 20
    • 2942731012 scopus 로고    scopus 로고
    • An extensive empirical study of feature selection metrics for text classification
    • Forman G. An extensive empirical study of feature selection metrics for text classification. The Journal of Machine Learning Research 2003, 3:1289-1305.
    • (2003) The Journal of Machine Learning Research , vol.3 , pp. 1289-1305
    • Forman, G.1
  • 24
    • 34547656102 scopus 로고    scopus 로고
    • A SVM-based cursive character recognizer
    • Camastra F. A SVM-based cursive character recognizer. Pattern Recognition 2007, 40(12):3721-3727.
    • (2007) Pattern Recognition , vol.40 , Issue.12 , pp. 3721-3727
    • Camastra, F.1
  • 25
    • 32044437552 scopus 로고    scopus 로고
    • A prototype classification method and its use in a hybrid solution for multiclass pattern recognition
    • Chou C.H., Lin C.C., Liu Y.H., Chang F. A prototype classification method and its use in a hybrid solution for multiclass pattern recognition. Pattern Recognition 2006, 39(4):624-634.
    • (2006) Pattern Recognition , vol.39 , Issue.4 , pp. 624-634
    • Chou, C.H.1    Lin, C.C.2    Liu, Y.H.3    Chang, F.4
  • 26
    • 13844281489 scopus 로고    scopus 로고
    • Fault diagnosis of power transformer based on multi-layer SVM classifier
    • Ganyun L.V., Cheng H., Zhai H., Dong L. Fault diagnosis of power transformer based on multi-layer SVM classifier. Electric Power Systems Research 2005, 74(1):1-7.
    • (2005) Electric Power Systems Research , vol.74 , Issue.1 , pp. 1-7
    • Ganyun, L.V.1    Cheng, H.2    Zhai, H.3    Dong, L.4
  • 27
    • 38649093286 scopus 로고    scopus 로고
    • Online option price forecasting by using unscented Kalman filters and support vector machines
    • Huang S.-C. Online option price forecasting by using unscented Kalman filters and support vector machines. Expert Systems with Applications 2008, 34(4):2819-2825.
    • (2008) Expert Systems with Applications , vol.34 , Issue.4 , pp. 2819-2825
    • Huang, S.-C.1
  • 28
    • 34548282645 scopus 로고    scopus 로고
    • Ultrasonographic feature selection and pattern classification for cervical lymph nodes using support vector machines
    • Zhang J., Wang Y., Dong Y., Wang Y. Ultrasonographic feature selection and pattern classification for cervical lymph nodes using support vector machines. Computer Methods and Programs in Biomedicine 2007, 88(1):75-84.
    • (2007) Computer Methods and Programs in Biomedicine , vol.88 , Issue.1 , pp. 75-84
    • Zhang, J.1    Wang, Y.2    Dong, Y.3    Wang, Y.4
  • 29
    • 34047247923 scopus 로고    scopus 로고
    • Combining eigenvector methods and support vector machines for detecting variability of Doppler ultrasound signals
    • Übeyli E.D. Combining eigenvector methods and support vector machines for detecting variability of Doppler ultrasound signals. Computer Methods and Programs in Biomedicine 2007, 86(2):181-190.
    • (2007) Computer Methods and Programs in Biomedicine , vol.86 , Issue.2 , pp. 181-190
    • Übeyli, E.D.1
  • 32
    • 64049084270 scopus 로고    scopus 로고
    • An automotive generator fault diagnosis system using discrete wavelet transform and artificial neural network
    • Wu J.-D., Kuo J.-M. An automotive generator fault diagnosis system using discrete wavelet transform and artificial neural network. Expert Systems with Applications 2009, 36(6):9776-9783.
    • (2009) Expert Systems with Applications , vol.36 , Issue.6 , pp. 9776-9783
    • Wu, J.-D.1    Kuo, J.-M.2
  • 33
    • 56349101801 scopus 로고    scopus 로고
    • Automatic detection of epileptic seizures in EEG using discrete wavelet transform and approximate entropy
    • Ocak H. Automatic detection of epileptic seizures in EEG using discrete wavelet transform and approximate entropy. Expert Systems with Applications 2009, 36:2027-2036.
    • (2009) Expert Systems with Applications , vol.36 , pp. 2027-2036
    • Ocak, H.1
  • 34
    • 24344500897 scopus 로고    scopus 로고
    • Multi-fault diagnosis of rolling bearing elements using wavelet analysis and hidden Markov model based fault recognition
    • Purushothama V., Narayanana S., Suryanarayana A.N.P. Multi-fault diagnosis of rolling bearing elements using wavelet analysis and hidden Markov model based fault recognition. NDT&E International 2005, 1-11.
    • (2005) NDT&E International , pp. 1-11
    • Purushothama, V.1    Narayanana, S.2    Suryanarayana, A.N.P.3
  • 35
    • 0024700097 scopus 로고
    • A theory for multiresolution signal decomposition: The wavelet representation
    • Mallat S.G. A theory for multiresolution signal decomposition: The wavelet representation. IEEE Transactions on Pattern Anal Machine Intelligence 1989, 11(7):674-693.
    • (1989) IEEE Transactions on Pattern Anal Machine Intelligence , vol.11 , Issue.7 , pp. 674-693
    • Mallat, S.G.1
  • 36
    • 41549102581 scopus 로고    scopus 로고
    • Analysis of EEG signals during epileptic and alcoholic states using AR modeling techniques
    • Faust O., Acharya R.U., Allen A.R., Lin C.M. Analysis of EEG signals during epileptic and alcoholic states using AR modeling techniques. IRBM 2008, 29(1):44-52.
    • (2008) IRBM , vol.29 , Issue.1 , pp. 44-52
    • Faust, O.1    Acharya, R.U.2    Allen, A.R.3    Lin, C.M.4
  • 38
    • 44149084366 scopus 로고
    • An application of information theory to multivariate analysis
    • Kullback S. An application of information theory to multivariate analysis. Annals of Mathematical Statistics 1952, 23:88.
    • (1952) Annals of Mathematical Statistics , vol.23 , pp. 88
    • Kullback, S.1
  • 40
    • 34447620283 scopus 로고    scopus 로고
    • Artificial neural networks based on principal component analysis input selection for clinical pattern recognition analysis
    • Zhang Y.X. Artificial neural networks based on principal component analysis input selection for clinical pattern recognition analysis. Talanta 2007, 73:68-75.
    • (2007) Talanta , vol.73 , pp. 68-75
    • Zhang, Y.X.1
  • 43
    • 5644255894 scopus 로고    scopus 로고
    • Automatic recognition of alertness level by using wavelet transform and artificial neural network
    • Kiymik M.K., Akin M., Subasi A. Automatic recognition of alertness level by using wavelet transform and artificial neural network. Journal of Neuroscience Methods 2004, 139:231-240.
    • (2004) Journal of Neuroscience Methods , vol.139 , pp. 231-240
    • Kiymik, M.K.1    Akin, M.2    Subasi, A.3
  • 44
    • 0016355478 scopus 로고
    • A new look at the statistical model identification
    • Akaike H. A new look at the statistical model identification. IEEE Transactions on Automatic Control 1974, 19:716-723.
    • (1974) IEEE Transactions on Automatic Control , vol.19 , pp. 716-723
    • Akaike, H.1
  • 45
    • 0029487651 scopus 로고
    • Selection of components in principal component analysis: a comparison of methods
    • Ferr L. Selection of components in principal component analysis: a comparison of methods. Computational Statistics and Data Analysis 1995, 19:669-682.
    • (1995) Computational Statistics and Data Analysis , vol.19 , pp. 669-682
    • Ferr, L.1
  • 46
    • 0033230994 scopus 로고    scopus 로고
    • Selection of the number of principal components: the variance of the reconstruction error criterion with a comparison to other methods
    • Valle S., Li W., Qin S.J. Selection of the number of principal components: the variance of the reconstruction error criterion with a comparison to other methods. Industrial and Engineering Chemistry Research 1999, 38:4389-4401.
    • (1999) Industrial and Engineering Chemistry Research , vol.38 , pp. 4389-4401
    • Valle, S.1    Li, W.2    Qin, S.J.3
  • 47
    • 50149116144 scopus 로고    scopus 로고
    • Dynamic classification for video stream using support vector machine
    • Awad M., Motai Y. Dynamic classification for video stream using support vector machine. Applied Soft Computing 2008, 8:1314-1325.
    • (2008) Applied Soft Computing , vol.8 , pp. 1314-1325
    • Awad, M.1    Motai, Y.2
  • 48
    • 0025756235 scopus 로고
    • Signal detectability use of ROC curves and their analysis
    • Centor R.M. Signal detectability use of ROC curves and their analysis. Medical Decision Making 1991, 102-106.
    • (1991) Medical Decision Making , pp. 102-106
    • Centor, R.M.1
  • 49
    • 0020524559 scopus 로고
    • A method of comparing the areas under receiver operating characteristic curves derived from the same cases
    • Hanley J.A., McNeil B.J. A method of comparing the areas under receiver operating characteristic curves derived from the same cases. Radiology 1983, 148(3):839-843.
    • (1983) Radiology , vol.148 , Issue.3 , pp. 839-843
    • Hanley, J.A.1    McNeil, B.J.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.