메뉴 건너뛰기




Volumn 18, Issue , 2014, Pages 312-323

A hybrid artificial neural network and genetic algorithm for predicting viscosity of Iranian crude oils

Author keywords

Artificial neural network; Correlation; Oil API gravity; Oil viscosity; Operating conditions; Sensitivity analysis

Indexed keywords

CORRELATION METHODS; ESTIMATION; GENETIC ALGORITHMS; NEURAL NETWORKS; SENSITIVITY ANALYSIS;

EID: 84897520403     PISSN: 18755100     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.jngse.2014.03.011     Document Type: Article
Times cited : (34)

References (22)
  • 1
    • 84867046293 scopus 로고    scopus 로고
    • Anew correlation for prediction of undersaturated crude oil viscosity
    • Abedini R., Abedini A., Yakhfrouzan N.E. Anew correlation for prediction of undersaturated crude oil viscosity. Pet. Coal 2010, 52(1):50-55.
    • (2010) Pet. Coal , vol.52 , Issue.1 , pp. 50-55
    • Abedini, R.1    Abedini, A.2    Yakhfrouzan, N.E.3
  • 3
    • 61749083047 scopus 로고    scopus 로고
    • Piles shaft capacity from CPT and CPTu data by polynomial neural networks and genetic algorithms
    • Ardalan H., Eslami A., Nariman-Zadeh N. Piles shaft capacity from CPT and CPTu data by polynomial neural networks and genetic algorithms. Comput. Geotech. 2009, 36:616-625.
    • (2009) Comput. Geotech. , vol.36 , pp. 616-625
    • Ardalan, H.1    Eslami, A.2    Nariman-Zadeh, N.3
  • 4
    • 0008502173 scopus 로고
    • Viscosity of air, water, natural gas, crude oil and its associated gases at oil-field temperatures and pressures
    • Beal C. Viscosity of air, water, natural gas, crude oil and its associated gases at oil-field temperatures and pressures. Trans. AIME 1946, 165:94-115.
    • (1946) Trans. AIME , vol.165 , pp. 94-115
    • Beal, C.1
  • 5
    • 77954817734 scopus 로고    scopus 로고
    • PVT correlations for Indian crude using artificial neural networks
    • Dutta S., Gupta J.P. PVT correlations for Indian crude using artificial neural networks. J.Pet. Sci. Eng. 2010, 72:93-109.
    • (2010) J.Pet. Sci. Eng. , vol.72 , pp. 93-109
    • Dutta, S.1    Gupta, J.P.2
  • 6
    • 0032637237 scopus 로고    scopus 로고
    • Models for predicting the viscosity of Middle East crude oils
    • Elsharkawy A.M., Alikhan A. Models for predicting the viscosity of Middle East crude oils. Fuel 1999, 78:891-903.
    • (1999) Fuel , vol.78 , pp. 891-903
    • Elsharkawy, A.M.1    Alikhan, A.2
  • 7
    • 84867237454 scopus 로고    scopus 로고
    • New predictive tools to estimate diesel oil density and viscosity
    • Ghaderi A. New predictive tools to estimate diesel oil density and viscosity. J.Pet. Sci. Eng. 2012, 98-99:19-21.
    • (2012) J.Pet. Sci. Eng. , pp. 19-21
    • Ghaderi, A.1
  • 8
    • 0002292335 scopus 로고
    • Generalized pressure-volume-temperature correlation for crude oil system
    • Glaso O. Generalized pressure-volume-temperature correlation for crude oil system. J.Pet. Technol. 1980, 2:785-795.
    • (1980) J.Pet. Technol. , vol.2 , pp. 785-795
    • Glaso, O.1
  • 9
  • 10
    • 59349097197 scopus 로고    scopus 로고
    • SPT correlation using GMDH type neural networks and genetic algorithms
    • SPT correlation using GMDH type neural networks and genetic algorithms. Eng. Geol. 2009, 104:144-155.
    • (2009) Eng. Geol. , vol.104 , pp. 144-155
    • Kalantary, F.1    Ardalan, H.2    Nariman-Zadeh, N.3
  • 11
    • 0028764322 scopus 로고
    • Large data bank improves crude physical property correlation
    • Kartoatmodjo F., Schmidt Z. Large data bank improves crude physical property correlation. Oil Gas J. 1994, 4:51-55.
    • (1994) Oil Gas J. , vol.4 , pp. 51-55
    • Kartoatmodjo, F.1    Schmidt, Z.2
  • 13
    • 0026931398 scopus 로고
    • Improved correlations for predicting the viscosity of light crudes
    • Labedi R. Improved correlations for predicting the viscosity of light crudes. J.Pet. Sci. Eng. 1992, 8(3):221-234.
    • (1992) J.Pet. Sci. Eng. , vol.8 , Issue.3 , pp. 221-234
    • Labedi, R.1
  • 14
    • 33746830757 scopus 로고    scopus 로고
    • Using support vector machines for long-term discharge prediction
    • Lin J.I.E., Cheng C.T., Chau K.W. Using support vector machines for long-term discharge prediction. Hydrol. Sci. J. 2006, 51(4):599-612.
    • (2006) Hydrol. Sci. J. , vol.51 , Issue.4 , pp. 599-612
    • Lin, J.I.E.1    Cheng, C.T.2    Chau, K.W.3
  • 15
    • 84867043783 scopus 로고    scopus 로고
    • Prediction of crude oil viscosity using feed-forward back-propagation neural network (FFBPNN)
    • Makinde F.A., Ako C.T., Orodu O.D., Asuquo I.U. Prediction of crude oil viscosity using feed-forward back-propagation neural network (FFBPNN). Pet. Coal 2012, 54(2):120-131.
    • (2012) Pet. Coal , vol.54 , Issue.2 , pp. 120-131
    • Makinde, F.A.1    Ako, C.T.2    Orodu, O.D.3    Asuquo, I.U.4
  • 16
    • 84855871299 scopus 로고    scopus 로고
    • Comparison of group method of data handling based genetic programming and back propagation systems to predict scour depth around bridge piers
    • Najafzadeh M., Barani Gh Comparison of group method of data handling based genetic programming and back propagation systems to predict scour depth around bridge piers. Sci. Iran. A 2011, 18(6):1207-1213.
    • (2011) Sci. Iran. A , vol.18 , Issue.6 , pp. 1207-1213
    • Najafzadeh, M.1    Barani, G.2
  • 17
    • 0037032164 scopus 로고    scopus 로고
    • Modelling of explosive cutting process of plates using GMDH type neural network and singular value decomposition
    • Nariman-Zadeh N., Darvizeh A., Darvizeh M., Gharababaei H. Modelling of explosive cutting process of plates using GMDH type neural network and singular value decomposition. J.Mater. Process. Technol. 2002, 128:80-87.
    • (2002) J.Mater. Process. Technol. , vol.128 , pp. 80-87
    • Nariman-Zadeh, N.1    Darvizeh, A.2    Darvizeh, M.3    Gharababaei, H.4
  • 18
    • 17844390396 scopus 로고    scopus 로고
    • Evolutionary design of generalized polynomial neural networks for modeling and prediction of explosive forming process
    • Nariman-Zadeh N., Darvizeh A., Jamali A., Moeini A. Evolutionary design of generalized polynomial neural networks for modeling and prediction of explosive forming process. J.Mater. Process. Technol. 2005, 164-165:1561-1571.
    • (2005) J.Mater. Process. Technol. , pp. 1561-1571
    • Nariman-Zadeh, N.1    Darvizeh, A.2    Jamali, A.3    Moeini, A.4
  • 19
    • 20444472420 scopus 로고    scopus 로고
    • Acorrelation approach for prediction of crude oil viscosities
    • Naseri A., Nikazar M., Mousavi Dehghani S.A. Acorrelation approach for prediction of crude oil viscosities. Pet. Sci. Technol. 2005, 47:163-174.
    • (2005) Pet. Sci. Technol. , vol.47 , pp. 163-174
    • Naseri, A.1    Nikazar, M.2    Mousavi Dehghani, S.A.3
  • 20
    • 69549121337 scopus 로고    scopus 로고
    • New viscosity correlations for dead crude oils
    • Sattarin M., Modarresi H., Bayat M., Teymori M. New viscosity correlations for dead crude oils. Pet. Coal 2007, 49(2):33-39.
    • (2007) Pet. Coal , vol.49 , Issue.2 , pp. 33-39
    • Sattarin, M.1    Modarresi, H.2    Bayat, M.3    Teymori, M.4
  • 21
    • 79952665748 scopus 로고    scopus 로고
    • The development of an artificial neural network model for prediction of crude oil viscosities
    • Torabi F., Abedini A., Abedini R. The development of an artificial neural network model for prediction of crude oil viscosities. Pet. Sci. Technol. 2011, 29(8):804-816.
    • (2011) Pet. Sci. Technol. , vol.29 , Issue.8 , pp. 804-816
    • Torabi, F.1    Abedini, A.2    Abedini, R.3
  • 22
    • 84897544762 scopus 로고    scopus 로고
    • Good prediction of gas price between MLFF and GMDH neural network
    • Varahrami V. Good prediction of gas price between MLFF and GMDH neural network. Int. J. Finance Account. 2012, 1(3):23-27.
    • (2012) Int. J. Finance Account. , vol.1 , Issue.3 , pp. 23-27
    • Varahrami, V.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.