메뉴 건너뛰기




Volumn 19, Issue 4, 2014, Pages 250-255

Orchestration of plant defense systems: Genes to populations

Author keywords

[No Author keywords available]

Indexed keywords

ARABIDOPSIS; CIRCADIAN RHYTHM; METABOLISM; PHYSIOLOGY; PLANT; PROCEDURES; SYSTEMS BIOLOGY;

EID: 84897452955     PISSN: 13601385     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.tplants.2014.01.003     Document Type: Review
Times cited : (15)

References (85)
  • 1
    • 84864460685 scopus 로고    scopus 로고
    • Defining the core Arabidopsis thaliana root microbiome
    • Lundberg D.S., et al. Defining the core Arabidopsis thaliana root microbiome. Nature 2012, 488:86-90.
    • (2012) Nature , vol.488 , pp. 86-90
    • Lundberg, D.S.1
  • 2
    • 84872238068 scopus 로고    scopus 로고
    • Plant defense compounds: systems approaches to metabolic analysis
    • Kliebenstein D.J. Plant defense compounds: systems approaches to metabolic analysis. Annu. Rev. Phytopathol. 2012, 50:155-173.
    • (2012) Annu. Rev. Phytopathol. , vol.50 , pp. 155-173
    • Kliebenstein, D.J.1
  • 3
    • 39849095692 scopus 로고    scopus 로고
    • Identifying the molecular basis of QTLs: eQTLs add a new dimension
    • Hansen B.G., et al. Identifying the molecular basis of QTLs: eQTLs add a new dimension. Trends Plant Sci. 2008, 13:72-77.
    • (2008) Trends Plant Sci. , vol.13 , pp. 72-77
    • Hansen, B.G.1
  • 4
    • 84865206069 scopus 로고    scopus 로고
    • NRT/PTR transporters are essential for translocation of glucosinolate defence compounds to seeds
    • Nour-Eldin H.H., et al. NRT/PTR transporters are essential for translocation of glucosinolate defence compounds to seeds. Nature 2012, 488:531-534.
    • (2012) Nature , vol.488 , pp. 531-534
    • Nour-Eldin, H.H.1
  • 5
    • 84884695670 scopus 로고    scopus 로고
    • Integration of biosynthesis and long-distance transport establish organ-specific glucosinolate profiles in vegetative Arabidopsis
    • Andersen T.G., et al. Integration of biosynthesis and long-distance transport establish organ-specific glucosinolate profiles in vegetative Arabidopsis. Plant Cell 2013, 25:3133-3145.
    • (2013) Plant Cell , vol.25 , pp. 3133-3145
    • Andersen, T.G.1
  • 6
    • 79551662808 scopus 로고    scopus 로고
    • Timing of plant immune responses by a central circadian regulator
    • Wang W., et al. Timing of plant immune responses by a central circadian regulator. Nature 2011, 470:110-114.
    • (2011) Nature , vol.470 , pp. 110-114
    • Wang, W.1
  • 7
    • 84868288164 scopus 로고    scopus 로고
    • Arabidopsis defense against Botrytis cinerea: chronology and regulation deciphered by high-resolution temporal transcriptomic analysis
    • Windram O., et al. Arabidopsis defense against Botrytis cinerea: chronology and regulation deciphered by high-resolution temporal transcriptomic analysis. Plant Cell 2012, 24:3530-3557.
    • (2012) Plant Cell , vol.24 , pp. 3530-3557
    • Windram, O.1
  • 8
    • 80054026739 scopus 로고    scopus 로고
    • An ecological genomic approach challenging the paradigm of differential plant responses to specialist versus generalist insect herbivores
    • Bidart-Bouzat M.G., Kliebenstein D. An ecological genomic approach challenging the paradigm of differential plant responses to specialist versus generalist insect herbivores. Oecologia 2011, 167:677-689.
    • (2011) Oecologia , vol.167 , pp. 677-689
    • Bidart-Bouzat, M.G.1    Kliebenstein, D.2
  • 9
    • 9444240888 scopus 로고    scopus 로고
    • A conserved transcript pattern in response to a specialist and a generalist herbivore
    • Reymond P., et al. A conserved transcript pattern in response to a specialist and a generalist herbivore. Plant Cell 2004, 16:3132-3147.
    • (2004) Plant Cell , vol.16 , pp. 3132-3147
    • Reymond, P.1
  • 10
    • 84872323769 scopus 로고    scopus 로고
    • Signalling of Arabidopsis thaliana response to Pieris brassicae eggs shares similarities with PAMP-triggered immunity
    • Gouhier-Darimont C., et al. Signalling of Arabidopsis thaliana response to Pieris brassicae eggs shares similarities with PAMP-triggered immunity. J. Exp. Bot. 2013, 64:665-674.
    • (2013) J. Exp. Bot. , vol.64 , pp. 665-674
    • Gouhier-Darimont, C.1
  • 11
    • 33646851407 scopus 로고    scopus 로고
    • Genome-wide transcriptional analysis of the Arabidopsis thaliana interaction with the plant pathogen Pseudomonas syringae pv. tomato DC3000 and the human pathogen Escherichia coli O157: H7
    • Thilmony R., et al. Genome-wide transcriptional analysis of the Arabidopsis thaliana interaction with the plant pathogen Pseudomonas syringae pv. tomato DC3000 and the human pathogen Escherichia coli O157: H7. Plant J. 2006, 46:34-53.
    • (2006) Plant J. , vol.46 , pp. 34-53
    • Thilmony, R.1
  • 12
    • 33751100626 scopus 로고    scopus 로고
    • The plant immune system
    • Jones J.D.G., Dangl J.L. The plant immune system. Nature 2006, 444:323-329.
    • (2006) Nature , vol.444 , pp. 323-329
    • Jones, J.D.G.1    Dangl, J.L.2
  • 13
    • 23844457959 scopus 로고    scopus 로고
    • Signal signature and transcriptome changes of Arabidopsis during pathogen and insect attack
    • De Vos M., et al. Signal signature and transcriptome changes of Arabidopsis during pathogen and insect attack. Mol. Plant Microbe Interact. 2005, 18:923-937.
    • (2005) Mol. Plant Microbe Interact. , vol.18 , pp. 923-937
    • De Vos, M.1
  • 14
    • 84875465307 scopus 로고    scopus 로고
    • Molecular signatures in Arabidopsis thaliana in response to insect attack and bacterial infection
    • Barah P., et al. Molecular signatures in Arabidopsis thaliana in response to insect attack and bacterial infection. PLoS ONE 2013, 8:e58987.
    • (2013) PLoS ONE , vol.8
    • Barah, P.1
  • 15
    • 77954065435 scopus 로고    scopus 로고
    • Deficiencies in jasmonate-mediated plant defense reveal quantitative variation in Botrytis cinerea pathogenesis
    • Rowe H.C., et al. Deficiencies in jasmonate-mediated plant defense reveal quantitative variation in Botrytis cinerea pathogenesis. PLoS Pathog. 2010, 6:e1000861.
    • (2010) PLoS Pathog. , vol.6
    • Rowe, H.C.1
  • 16
    • 84860686808 scopus 로고    scopus 로고
    • Specialist versus generalist insect herbivores and plant defense
    • Ali J.G., Agrawal A.A. Specialist versus generalist insect herbivores and plant defense. Trends Plant Sci. 2012, 17:293-302.
    • (2012) Trends Plant Sci. , vol.17 , pp. 293-302
    • Ali, J.G.1    Agrawal, A.A.2
  • 17
    • 34249862287 scopus 로고    scopus 로고
    • Learning causal networks from systems biology time course data: an effective model selection procedure for the vector autoregressive process
    • Opgen-Rhein R., Strimmer K. Learning causal networks from systems biology time course data: an effective model selection procedure for the vector autoregressive process. BMC Bioinformatics 2007, 8:S3.
    • (2007) BMC Bioinformatics , vol.8
    • Opgen-Rhein, R.1    Strimmer, K.2
  • 18
    • 58549110252 scopus 로고    scopus 로고
    • Stochastic modelling for quantitative description of heterogeneous biological systems
    • Wilkinson D.J. Stochastic modelling for quantitative description of heterogeneous biological systems. Nat. Rev. Genet. 2009, 10:122-133.
    • (2009) Nat. Rev. Genet. , vol.10 , pp. 122-133
    • Wilkinson, D.J.1
  • 19
    • 79955705381 scopus 로고    scopus 로고
    • Quantitative and temporal definition of the Mla transcriptional regulon during barley-powdery mildew interactions
    • Moscou M.J., et al. Quantitative and temporal definition of the Mla transcriptional regulon during barley-powdery mildew interactions. Mol. Plant Microbe Interact. 2011, 24:694-705.
    • (2011) Mol. Plant Microbe Interact. , vol.24 , pp. 694-705
    • Moscou, M.J.1
  • 20
    • 33748058888 scopus 로고    scopus 로고
    • Bistability in bacteria
    • Dubnau D., Losick R. Bistability in bacteria. Mol. Microbiol. 2006, 61:564-572.
    • (2006) Mol. Microbiol. , vol.61 , pp. 564-572
    • Dubnau, D.1    Losick, R.2
  • 21
    • 53849146767 scopus 로고    scopus 로고
    • Bistability, epigenetics, and bet-hedging in bacteria
    • Veening J.W., et al. Bistability, epigenetics, and bet-hedging in bacteria. Annu. Rev. Microbiol. 2008, 62:193-210.
    • (2008) Annu. Rev. Microbiol. , vol.62 , pp. 193-210
    • Veening, J.W.1
  • 22
    • 84857780876 scopus 로고    scopus 로고
    • Evidence for network evolution in an Arabidopsis interactome map
    • Braun P., et al. Evidence for network evolution in an Arabidopsis interactome map. Science 2011, 333:601-607.
    • (2011) Science , vol.333 , pp. 601-607
    • Braun, P.1
  • 23
    • 79960957705 scopus 로고    scopus 로고
    • Independently evolved virulence effectors converge onto hubs in a plant immune system network
    • Mukhtar M.S., et al. Independently evolved virulence effectors converge onto hubs in a plant immune system network. Science 2011, 333:596-601.
    • (2011) Science , vol.333 , pp. 596-601
    • Mukhtar, M.S.1
  • 24
    • 0032869624 scopus 로고    scopus 로고
    • Costs of induced responses and tolerance to herbivory in male and female fitness components of wild radish
    • Agrawal A.A., et al. Costs of induced responses and tolerance to herbivory in male and female fitness components of wild radish. Evolution 1999, 53:1093-1104.
    • (1999) Evolution , vol.53 , pp. 1093-1104
    • Agrawal, A.A.1
  • 25
    • 0033135234 scopus 로고    scopus 로고
    • The ecology and evolution of plant tolerance to herbivory
    • Strauss S.Y., Agrawal A.A. The ecology and evolution of plant tolerance to herbivory. Trends Ecol. Evol. 1999, 14:179-185.
    • (1999) Trends Ecol. Evol. , vol.14 , pp. 179-185
    • Strauss, S.Y.1    Agrawal, A.A.2
  • 27
    • 84866378393 scopus 로고    scopus 로고
    • Metabolic and evolutionary costs of herbivory defense: systems biology of glucosinolate synthesis
    • Bekaert M., et al. Metabolic and evolutionary costs of herbivory defense: systems biology of glucosinolate synthesis. New Phytol. 2012, 196:596-605.
    • (2012) New Phytol. , vol.196 , pp. 596-605
    • Bekaert, M.1
  • 28
    • 79960826230 scopus 로고    scopus 로고
    • Using knockout mutants to reveal the growth costs of defensive traits
    • Züst T., et al. Using knockout mutants to reveal the growth costs of defensive traits. Proc. Biol. Sci. 2011, 278:2598-2603.
    • (2011) Proc. Biol. Sci. , vol.278 , pp. 2598-2603
    • Züst, T.1
  • 29
    • 84880936203 scopus 로고    scopus 로고
    • Hierarchical nuclear and cytoplasmic genetic architectures for plant growth and defense within Arabidopsis
    • Joseph B., et al. Hierarchical nuclear and cytoplasmic genetic architectures for plant growth and defense within Arabidopsis. Plant Cell 2013, 25:1929-1945.
    • (2013) Plant Cell , vol.25 , pp. 1929-1945
    • Joseph, B.1
  • 30
    • 79953079198 scopus 로고    scopus 로고
    • New synthesis: trade-offs in chemical ecology
    • Agrawal A.A. New synthesis: trade-offs in chemical ecology. J. Chem. Ecol. 2011, 37:230-231.
    • (2011) J. Chem. Ecol. , vol.37 , pp. 230-231
    • Agrawal, A.A.1
  • 31
    • 84875442415 scopus 로고    scopus 로고
    • New synthesis: regulatory evolution, the veiled world of chemical diversification
    • Kliebenstein D.J. New synthesis: regulatory evolution, the veiled world of chemical diversification. J. Chem. Ecol. 2013, 39:349.
    • (2013) J. Chem. Ecol. , vol.39 , pp. 349
    • Kliebenstein, D.J.1
  • 32
    • 84867018974 scopus 로고    scopus 로고
    • The Arabidopsis DELLA RGA-LIKE3 Is a direct target of MYC2 and modulates jasmonate signaling responses
    • Wild M., et al. The Arabidopsis DELLA RGA-LIKE3 Is a direct target of MYC2 and modulates jasmonate signaling responses. Plant Cell 2012, 24:3307-3319.
    • (2012) Plant Cell , vol.24 , pp. 3307-3319
    • Wild, M.1
  • 33
    • 84879465560 scopus 로고    scopus 로고
    • A bHLH-type transcription factor, ABA-INDUCIBLE BHLH-TYPE TRANSCRIPTION FACTOR/JA-ASSOCIATED MYC2-LIKE1, acts as a repressor to negatively regulate jasmonate signaling in Arabidopsis
    • Nakata M., et al. A bHLH-type transcription factor, ABA-INDUCIBLE BHLH-TYPE TRANSCRIPTION FACTOR/JA-ASSOCIATED MYC2-LIKE1, acts as a repressor to negatively regulate jasmonate signaling in Arabidopsis. Plant Cell 2013, 25:1641-1656.
    • (2013) Plant Cell , vol.25 , pp. 1641-1656
    • Nakata, M.1
  • 34
    • 51749110466 scopus 로고    scopus 로고
    • Global transcriptome analysis reveals circadian regulation of key pathways in plant growth and development
    • Covington M.F., et al. Global transcriptome analysis reveals circadian regulation of key pathways in plant growth and development. Genome Biol. 2008, 9:R130.
    • (2008) Genome Biol. , vol.9
    • Covington, M.F.1
  • 35
    • 66449087281 scopus 로고    scopus 로고
    • The circadian system in higher plants
    • Harmer S.L. The circadian system in higher plants. Annu. Rev. Plant Biol. 2009, 60:357-377.
    • (2009) Annu. Rev. Plant Biol. , vol.60 , pp. 357-377
    • Harmer, S.L.1
  • 36
    • 80055107434 scopus 로고    scopus 로고
    • Defence responses of Arabidopsis thaliana to infection by Pseudomonas syringae are regulated by the circadian clock
    • Bhardwaj V., et al. Defence responses of Arabidopsis thaliana to infection by Pseudomonas syringae are regulated by the circadian clock. PLoS ONE 2011, 6:e26968.
    • (2011) PLoS ONE , vol.6
    • Bhardwaj, V.1
  • 37
    • 84879528088 scopus 로고    scopus 로고
    • Crosstalk between the circadian clock and innate immunity in Arabidopsis
    • Zhang C., et al. Crosstalk between the circadian clock and innate immunity in Arabidopsis. PLoS Pathog. 2013, 9:e1003370.
    • (2013) PLoS Pathog. , vol.9
    • Zhang, C.1
  • 38
    • 84864494656 scopus 로고    scopus 로고
    • TIME FOR COFFEE represses accumulation of the MYC2 transcription factor to provide time-of-day regulation of jasmonate signaling in Arabidopsis
    • Shin J., et al. TIME FOR COFFEE represses accumulation of the MYC2 transcription factor to provide time-of-day regulation of jasmonate signaling in Arabidopsis. Plant Cell 2012, 24:2470-2482.
    • (2012) Plant Cell , vol.24 , pp. 2470-2482
    • Shin, J.1
  • 39
    • 84858681457 scopus 로고    scopus 로고
    • Arabidopsis synchronizes jasmonate-mediated defense with insect circadian behavior
    • Goodspeed D., et al. Arabidopsis synchronizes jasmonate-mediated defense with insect circadian behavior. Proc. Natl. Acad. Sci. U.S.A. 2012, 109:4674-4677.
    • (2012) Proc. Natl. Acad. Sci. U.S.A. , vol.109 , pp. 4674-4677
    • Goodspeed, D.1
  • 40
    • 43049142587 scopus 로고    scopus 로고
    • DELLAs control plant immune responses by modulating the balance and salicylic acid signaling
    • Navarro L., et al. DELLAs control plant immune responses by modulating the balance and salicylic acid signaling. Curr. Biol. 2008, 18:650-655.
    • (2008) Curr. Biol. , vol.18 , pp. 650-655
    • Navarro, L.1
  • 41
    • 78649920346 scopus 로고    scopus 로고
    • DELLAs modulate jasmonate signaling via competitive binding to JAZs
    • Hou X., et al. DELLAs modulate jasmonate signaling via competitive binding to JAZs. Dev. Cell 2010, 19:884-894.
    • (2010) Dev. Cell , vol.19 , pp. 884-894
    • Hou, X.1
  • 42
    • 84864430319 scopus 로고    scopus 로고
    • Arabidopsis MYC2 interacts with DELLA proteins in regulating sesquiterpene synthase gene expression
    • Hong G-J., et al. Arabidopsis MYC2 interacts with DELLA proteins in regulating sesquiterpene synthase gene expression. Plant Cell 2012, 24:2635-2648.
    • (2012) Plant Cell , vol.24 , pp. 2635-2648
    • Hong, G.-J.1
  • 43
    • 79955015674 scopus 로고    scopus 로고
    • Jasmonate signaling involves the abscisic acid receptor PYL4 to regulate metabolic reprogramming in Arabidopsis and tobacco
    • Lackman P., et al. Jasmonate signaling involves the abscisic acid receptor PYL4 to regulate metabolic reprogramming in Arabidopsis and tobacco. Proc. Natl. Acad. Sci. U.S.A. 2011, 108:5891-5896.
    • (2011) Proc. Natl. Acad. Sci. U.S.A. , vol.108 , pp. 5891-5896
    • Lackman, P.1
  • 44
    • 84876680040 scopus 로고    scopus 로고
    • A chemical complementation approach reveals genes and interactions of flavonoids with other pathways
    • Pourcel L., et al. A chemical complementation approach reveals genes and interactions of flavonoids with other pathways. Plant J. 2013, 74:383-397.
    • (2013) Plant J. , vol.74 , pp. 383-397
    • Pourcel, L.1
  • 45
    • 79953094978 scopus 로고    scopus 로고
    • Network quantitative trait loci mapping of circadian clock outputs identifies metabolic pathway-to-clock linkages in Arabidopsis
    • Kerwin R.E., et al. Network quantitative trait loci mapping of circadian clock outputs identifies metabolic pathway-to-clock linkages in Arabidopsis. Plant Cell 2011, 23:471-485.
    • (2011) Plant Cell , vol.23 , pp. 471-485
    • Kerwin, R.E.1
  • 46
    • 34848837299 scopus 로고    scopus 로고
    • Linking metabolic QTLs with network and cis-eQTLs controlling biosynthetic pathways
    • Wentzell A.M., et al. Linking metabolic QTLs with network and cis-eQTLs controlling biosynthetic pathways. PLoS Genet. 2007, 3:1687-1701.
    • (2007) PLoS Genet. , vol.3 , pp. 1687-1701
    • Wentzell, A.M.1
  • 47
    • 77951986187 scopus 로고    scopus 로고
    • A complex interplay of three R2R3 MYB transcription factors determines the profile of aliphatic glucosinolates in Arabidopsis
    • Sønderby I.E., et al. A complex interplay of three R2R3 MYB transcription factors determines the profile of aliphatic glucosinolates in Arabidopsis. Plant Physiol. 2010, 153:348-363.
    • (2010) Plant Physiol. , vol.153 , pp. 348-363
    • Sønderby, I.E.1
  • 48
    • 34547526914 scopus 로고    scopus 로고
    • Omics-based identification of Arabidopsis Myb transcription factors regulating aliphatic glucosinolate biosynthesis
    • Hirai M., et al. Omics-based identification of Arabidopsis Myb transcription factors regulating aliphatic glucosinolate biosynthesis. Proc. Natl. Acad. Sci. U.S.A. 2007, 104:6478-6483.
    • (2007) Proc. Natl. Acad. Sci. U.S.A. , vol.104 , pp. 6478-6483
    • Hirai, M.1
  • 49
    • 84878992867 scopus 로고    scopus 로고
    • Molecular basis for the action of a dietary flavonoid revealed by the comprehensive identification of apigenin human targets
    • Arango D., et al. Molecular basis for the action of a dietary flavonoid revealed by the comprehensive identification of apigenin human targets. Proc. Natl. Acad. Sci. U.S.A. 2013, 110:E2153-E2162.
    • (2013) Proc. Natl. Acad. Sci. U.S.A. , vol.110
    • Arango, D.1
  • 50
    • 76249108093 scopus 로고    scopus 로고
    • Laser microdissection of Arabidopsis cells at the powdery mildew infection site reveals site-specific processes and regulators
    • Chandran D., et al. Laser microdissection of Arabidopsis cells at the powdery mildew infection site reveals site-specific processes and regulators. Proc. Natl. Acad. Sci. U.S.A. 2010, 107:460-465.
    • (2010) Proc. Natl. Acad. Sci. U.S.A. , vol.107 , pp. 460-465
    • Chandran, D.1
  • 51
    • 84875997428 scopus 로고    scopus 로고
    • Host cell ploidy underlying the fungal feeding site is a determinant of powdery mildew growth and reproduction
    • Chandran D., et al. Host cell ploidy underlying the fungal feeding site is a determinant of powdery mildew growth and reproduction. Mol. Plant-Microbe Interact. 2013, 26:537-545.
    • (2013) Mol. Plant-Microbe Interact. , vol.26 , pp. 537-545
    • Chandran, D.1
  • 52
    • 18944376660 scopus 로고    scopus 로고
    • Molecular characterization of a soybean cyst nematode (Heterodera glycines) homolog of unc-87
    • Matthews B.F., et al. Molecular characterization of a soybean cyst nematode (Heterodera glycines) homolog of unc-87. J. Nematol. 2004, 36:457-465.
    • (2004) J. Nematol. , vol.36 , pp. 457-465
    • Matthews, B.F.1
  • 53
    • 27944495693 scopus 로고    scopus 로고
    • Laser capture microdissection (LCM) and expression analyses of Glycine max (soybean) syncytium containing root regions formed by the plant pathogen Heterodera glycines (soybean cyst nematode)
    • Klink V.P., et al. Laser capture microdissection (LCM) and expression analyses of Glycine max (soybean) syncytium containing root regions formed by the plant pathogen Heterodera glycines (soybean cyst nematode). Plant Mol. Biol. 2005, 59:965-979.
    • (2005) Plant Mol. Biol. , vol.59 , pp. 965-979
    • Klink, V.P.1
  • 54
    • 84897441180 scopus 로고    scopus 로고
    • Isolation of developmentally regulated genes using microarrays and laser capture microdissection (LCM) of Glycine max (soybean) syncytia formed by the plant pathogen Heterodera glycines (soybean cyst nematode)
    • Klink V.P., et al. Isolation of developmentally regulated genes using microarrays and laser capture microdissection (LCM) of Glycine max (soybean) syncytia formed by the plant pathogen Heterodera glycines (soybean cyst nematode). Plant Biol. 2006, 2006:276.
    • (2006) Plant Biol. , vol.2006 , pp. 276
    • Klink, V.P.1
  • 55
    • 84862986420 scopus 로고    scopus 로고
    • Spatial and temporal transcriptomic analysis of the Arabidopsis thaliana-Botrytis cinerea interaction
    • Mulema J.M.K., Denby K.J. Spatial and temporal transcriptomic analysis of the Arabidopsis thaliana-Botrytis cinerea interaction. Mol. Biol. Rep. 2012, 39:4039-4049.
    • (2012) Mol. Biol. Rep. , vol.39 , pp. 4039-4049
    • Mulema, J.M.K.1    Denby, K.J.2
  • 56
    • 82755186021 scopus 로고    scopus 로고
    • Proteomic analysis of the Arabidopsis thaliana-Botrytis cinerea interaction using two-dimensional liquid chromatography
    • Mulema J.M.K., et al. Proteomic analysis of the Arabidopsis thaliana-Botrytis cinerea interaction using two-dimensional liquid chromatography. Afr. J. Biotechnol. 2011, 10:17551-17563.
    • (2011) Afr. J. Biotechnol. , vol.10 , pp. 17551-17563
    • Mulema, J.M.K.1
  • 57
    • 33644807824 scopus 로고    scopus 로고
    • Secondary metabolites influence Arabidopsis/Botrytis interactions: variation in host production and pathogen sensitivity
    • Kliebenstein D.J., et al. Secondary metabolites influence Arabidopsis/Botrytis interactions: variation in host production and pathogen sensitivity. Plant J. 2005, 44:25-36.
    • (2005) Plant J. , vol.44 , pp. 25-36
    • Kliebenstein, D.J.1
  • 58
    • 24944436247 scopus 로고    scopus 로고
    • Contrasting mechanisms of defense against biotrophic and necrotrophic pathogens
    • Glazebrook J. Contrasting mechanisms of defense against biotrophic and necrotrophic pathogens. Annu. Rev. Phytopathol. 2005, 43:205-227.
    • (2005) Annu. Rev. Phytopathol. , vol.43 , pp. 205-227
    • Glazebrook, J.1
  • 59
    • 0036561207 scopus 로고    scopus 로고
    • Induced systemic resistance (ISR) against pathogens in the context of induced plant defences
    • Heil M., Bostock R.M. Induced systemic resistance (ISR) against pathogens in the context of induced plant defences. Ann. Bot. (Lond.) 2002, 89:503-512.
    • (2002) Ann. Bot. (Lond.) , vol.89 , pp. 503-512
    • Heil, M.1    Bostock, R.M.2
  • 60
    • 33748777667 scopus 로고    scopus 로고
    • Herbivore-Induced resistance against microbial pathogens in Arabidopsis
    • de Vos M., et al. Herbivore-Induced resistance against microbial pathogens in Arabidopsis. Plant Physiol. 2006, 142:352-363.
    • (2006) Plant Physiol. , vol.142 , pp. 352-363
    • de Vos, M.1
  • 61
    • 0030863513 scopus 로고    scopus 로고
    • Systemic acquired resistance
    • Sticher L., et al. Systemic acquired resistance. Annu. Rev. Phytopathol. 1997, 35:235-270.
    • (1997) Annu. Rev. Phytopathol. , vol.35 , pp. 235-270
    • Sticher, L.1
  • 62
    • 0032170379 scopus 로고    scopus 로고
    • A novel signaling pathway controlling induced systemic resistance in Arabidopsis
    • Pieterse C.M.J., et al. A novel signaling pathway controlling induced systemic resistance in Arabidopsis. Plant Cell 1998, 10:1571-1580.
    • (1998) Plant Cell , vol.10 , pp. 1571-1580
    • Pieterse, C.M.J.1
  • 63
    • 0031719772 scopus 로고    scopus 로고
    • Systemic resistance induced by rhizosphere bacteria
    • van Loon L.C., et al. Systemic resistance induced by rhizosphere bacteria. Annu. Rev. Phytopathol. 1998, 36:453-483.
    • (1998) Annu. Rev. Phytopathol. , vol.36 , pp. 453-483
    • van Loon, L.C.1
  • 64
    • 13444283310 scopus 로고    scopus 로고
    • Pseudomonas syringae manipulates systemic plant defenses against pathogens and herbivores
    • Cui J., et al. Pseudomonas syringae manipulates systemic plant defenses against pathogens and herbivores. Proc. Natl. Acad. Sci. U.S.A. 2005, 102:1791-1796.
    • (2005) Proc. Natl. Acad. Sci. U.S.A. , vol.102 , pp. 1791-1796
    • Cui, J.1
  • 65
    • 64249098608 scopus 로고    scopus 로고
    • Priming in systemic plant immunity
    • Jung H.W., et al. Priming in systemic plant immunity. Science 2009, 324:89-91.
    • (2009) Science , vol.324 , pp. 89-91
    • Jung, H.W.1
  • 66
    • 79955467963 scopus 로고    scopus 로고
    • Glycerol-3-phosphate is a critical mobile inducer of systemic immunity in plants
    • Chanda B., et al. Glycerol-3-phosphate is a critical mobile inducer of systemic immunity in plants. Nat. Genet. 2011, 43:421-427.
    • (2011) Nat. Genet. , vol.43 , pp. 421-427
    • Chanda, B.1
  • 67
    • 79953704497 scopus 로고    scopus 로고
    • Interconnection between methyl salicylate and lipid-based long-distance signaling during the development of systemic acquired resistance in Arabidopsis and tobacco
    • Liu P-P., et al. Interconnection between methyl salicylate and lipid-based long-distance signaling during the development of systemic acquired resistance in Arabidopsis and tobacco. Plant Physiol. 2011, 155:1762-1768.
    • (2011) Plant Physiol. , vol.155 , pp. 1762-1768
    • Liu, P.-P.1
  • 68
    • 68149112475 scopus 로고    scopus 로고
    • Plants under attack: systemic signals in defence
    • Shah J. Plants under attack: systemic signals in defence. Curr. Opin. Plant Biol. 2009, 12:459-464.
    • (2009) Curr. Opin. Plant Biol. , vol.12 , pp. 459-464
    • Shah, J.1
  • 69
    • 0032545346 scopus 로고    scopus 로고
    • Regulation of polar auxin transport by AtPIN1 in Arabidopsis vascular tissue
    • Galweiler L., et al. Regulation of polar auxin transport by AtPIN1 in Arabidopsis vascular tissue. Science 1998, 282:2226-2230.
    • (1998) Science , vol.282 , pp. 2226-2230
    • Galweiler, L.1
  • 70
    • 84880973936 scopus 로고    scopus 로고
    • Export of salicylic acid from the chloroplast requires the multidrug and toxin extrusion-like transporter EDS5
    • Serrano M., et al. Export of salicylic acid from the chloroplast requires the multidrug and toxin extrusion-like transporter EDS5. Plant Physiol. 2013, 162:1815-1821.
    • (2013) Plant Physiol. , vol.162 , pp. 1815-1821
    • Serrano, M.1
  • 71
    • 78649481757 scopus 로고    scopus 로고
    • Sugar transporters for intercellular exchange and nutrition of pathogens
    • Chen L-Q., et al. Sugar transporters for intercellular exchange and nutrition of pathogens. Nature 2010, 468:527-532.
    • (2010) Nature , vol.468 , pp. 527-532
    • Chen, L.-Q.1
  • 72
    • 84855846270 scopus 로고    scopus 로고
    • Sucrose efflux mediated by SWEET proteins as a key step for phloem transport
    • Chen L-Q., et al. Sucrose efflux mediated by SWEET proteins as a key step for phloem transport. Science 2012, 335:207-211.
    • (2012) Science , vol.335 , pp. 207-211
    • Chen, L.-Q.1
  • 73
    • 0002878062 scopus 로고
    • Accumulation of nicotine in reciprocal grafts of tomato and tobacco
    • Dawson R.F. Accumulation of nicotine in reciprocal grafts of tomato and tobacco. Am. J. Bot. 1942, 29:66-71.
    • (1942) Am. J. Bot. , vol.29 , pp. 66-71
    • Dawson, R.F.1
  • 74
    • 0032493349 scopus 로고    scopus 로고
    • Jasmonate-induced responses are costly but benefit plants under attack in native populations
    • Baldwin I.T. Jasmonate-induced responses are costly but benefit plants under attack in native populations. Proc. Natl. Acad. Sci. U.S.A. 1998, 95:8113-8118.
    • (1998) Proc. Natl. Acad. Sci. U.S.A. , vol.95 , pp. 8113-8118
    • Baldwin, I.T.1
  • 75
    • 0034096525 scopus 로고    scopus 로고
    • Jasmonate-induced responses of Nicotiana sylvestris results in fitness costs due to impaired competitive ability for nitrogen
    • Baldwin I.T., Hamilton W. Jasmonate-induced responses of Nicotiana sylvestris results in fitness costs due to impaired competitive ability for nitrogen. J. Chem. Ecol. 2000, 26:915-952.
    • (2000) J. Chem. Ecol. , vol.26 , pp. 915-952
    • Baldwin, I.T.1    Hamilton, W.2
  • 76
    • 11944254202 scopus 로고
    • Interplant communication: airborne methyl jasmonate induces synthesis of proteinase-inhibitors in plant leaves
    • Farmer E.E., Ryan C.A. Interplant communication: airborne methyl jasmonate induces synthesis of proteinase-inhibitors in plant leaves. Proc. Natl. Acad. Sci. U.S.A. 1990, 87:7713-7716.
    • (1990) Proc. Natl. Acad. Sci. U.S.A. , vol.87 , pp. 7713-7716
    • Farmer, E.E.1    Ryan, C.A.2
  • 77
    • 84873739025 scopus 로고    scopus 로고
    • Genotypic recognition and spatial responses by rice roots
    • Fang S., et al. Genotypic recognition and spatial responses by rice roots. Proc. Natl. Acad. Sci. U.S.A. 2013, 110:2670-2675.
    • (2013) Proc. Natl. Acad. Sci. U.S.A. , vol.110 , pp. 2670-2675
    • Fang, S.1
  • 78
    • 0036077497 scopus 로고    scopus 로고
    • Intra-plant versus inter-plant root competition in beans: avoidance, resource matching or tragedy of the commons
    • Maina G.G., et al. Intra-plant versus inter-plant root competition in beans: avoidance, resource matching or tragedy of the commons. Plant Ecol. 2002, 160:235-247.
    • (2002) Plant Ecol. , vol.160 , pp. 235-247
    • Maina, G.G.1
  • 79
    • 0042210007 scopus 로고    scopus 로고
    • Self/non-self discrimination in roots
    • Falik O., et al. Self/non-self discrimination in roots. J. Ecol. 2003, 91:525-531.
    • (2003) J. Ecol. , vol.91 , pp. 525-531
    • Falik, O.1
  • 80
    • 35248816495 scopus 로고    scopus 로고
    • Kin recognition in an annual plant
    • Dudley S.A., File A.L. Kin recognition in an annual plant. Biol. Lett. 2007, 3:435-438.
    • (2007) Biol. Lett. , vol.3 , pp. 435-438
    • Dudley, S.A.1    File, A.L.2
  • 81
    • 77954063060 scopus 로고    scopus 로고
    • Plants integrate information about nutrients and neighbors
    • Cahill J.F., et al. Plants integrate information about nutrients and neighbors. Science 2010, 328:1657.
    • (2010) Science , vol.328 , pp. 1657
    • Cahill, J.F.1
  • 82
    • 84931748943 scopus 로고    scopus 로고
    • Underground signals carried through common mycelial networks warn neighbouring plants of aphid attack
    • Babikova Z., et al. Underground signals carried through common mycelial networks warn neighbouring plants of aphid attack. Ecol. Lett. 2013, 16:835-843.
    • (2013) Ecol. Lett. , vol.16 , pp. 835-843
    • Babikova, Z.1
  • 83
    • 50649123292 scopus 로고    scopus 로고
    • Genotype, age, tissue, and environment regulate the structural outcome of glucosinolate activation
    • Wentzell A.M., Kliebenstein D.J. Genotype, age, tissue, and environment regulate the structural outcome of glucosinolate activation. Plant Physiol. 2008, 147:415-428.
    • (2008) Plant Physiol. , vol.147 , pp. 415-428
    • Wentzell, A.M.1    Kliebenstein, D.J.2
  • 84
    • 84894135987 scopus 로고    scopus 로고
    • Exploring the shallow end; estimating information content in transcriptomics studies
    • Kliebenstein D.J. Exploring the shallow end; estimating information content in transcriptomics studies. Front. Plant Sci. 2012, 3:213.
    • (2012) Front. Plant Sci. , vol.3 , pp. 213
    • Kliebenstein, D.J.1
  • 85
    • 84878448872 scopus 로고    scopus 로고
    • Identifying genotype-by-environment interactions in the metabolism of germinating Arabidopsis seeds using generalized genetical genomics
    • Joosen R.V.L., et al. Identifying genotype-by-environment interactions in the metabolism of germinating Arabidopsis seeds using generalized genetical genomics. Plant Physiol. 2013, 162:553-566.
    • (2013) Plant Physiol. , vol.162 , pp. 553-566
    • Joosen, R.V.L.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.