메뉴 건너뛰기




Volumn 61, Issue , 2014, Pages 1-10

Generation of synthetic benchmark electrical load profiles using publicly available load and weather data

Author keywords

Artificial neural networks; Load profile; Power networks; Public data; Synthetic generation; Weather data

Indexed keywords

ELECTRIC LOADS; NEURAL NETWORKS; RENEWABLE ENERGY RESOURCES;

EID: 84897438340     PISSN: 01420615     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.ijepes.2014.03.005     Document Type: Article
Times cited : (33)

References (38)
  • 1
    • 84860742606 scopus 로고    scopus 로고
    • Assessing the relevance of load profiling information in electrical load forecasting based on neural network models
    • J.C. Sousaa, L.P. Nevesa, and H.M. Jorgeb Assessing the relevance of load profiling information in electrical load forecasting based on neural network models Int J Electr Power Energy Syst 40 2012 85 93
    • (2012) Int J Electr Power Energy Syst , vol.40 , pp. 85-93
    • Sousaa, J.C.1    Nevesa, L.P.2    Jorgeb, H.M.3
  • 3
    • 79960745401 scopus 로고    scopus 로고
    • Modeling hourly electricity dynamics for policy making in long-term scenarios
    • A. Pinaa, C. Silvac, and P. Ferrãoa Modeling hourly electricity dynamics for policy making in long-term scenarios Energy Policy 39 2011 4692 4702
    • (2011) Energy Policy , vol.39 , pp. 4692-4702
    • Pinaa, A.1    Silvac, C.2    Ferrãoa, P.3
  • 4
    • 0035397505 scopus 로고    scopus 로고
    • Relating residential and commercial sector electricity loads to climate - Evaluating state level sensitivities and vulnerabilities
    • DOI 10.1016/S0360-5442(01)00023-8, PII S0360544201000238
    • D.J. Sailor Relating residential and commercial sector electricity loads to climate-evaluating state level sensitivities and vulnerabilities Energy 26 2001 645 657 (Pubitemid 32646711)
    • (2001) Energy , vol.26 , Issue.7 , pp. 645-657
    • Sailor, D.J.1
  • 5
    • 0036469966 scopus 로고    scopus 로고
    • Modeling of the appliance, lighting, and space-cooling energy consumptions in the residential sector using neural networks
    • DOI 10.1016/S0306-2619(01)00049-6, PII S0306261901000496
    • M. Aydinalp, V.I. Ugursal, and A.S. Fung Modeling of the appliance, lighting, and space-cooling energy consumptions in the residential sector using neural networks Appl Energy 71 2002 87 110 (Pubitemid 34133498)
    • (2002) Applied Energy , vol.71 , Issue.2 , pp. 87-110
    • Aydinalp, M.1    Ismet Ugursal, V.2    Fung, A.S.3
  • 7
    • 34548488508 scopus 로고    scopus 로고
    • Generation of synthetic sequences of electricity demand: Application in South Australia
    • DOI 10.1016/j.energy.2007.04.001, PII S0360544207000680
    • L. Magnano, and J.W. Boland Generation of synthetic sequences of electricity demand: application in South Australia Energy 32 2007 2230 2243 (Pubitemid 47374969)
    • (2007) Energy , vol.32 , Issue.11 , pp. 2230-2243
    • Magnano, L.1    Boland, J.W.2
  • 8
    • 84858399001 scopus 로고    scopus 로고
    • Mid-term load forecasting: Level suitably of wavelet and neural network based on factor selection
    • P. Bunnoon, K. Chalermyanont, and C. Limsakul Mid-term load forecasting: level suitably of wavelet and neural network based on factor selection Energy Proc 14 2012 438 444
    • (2012) Energy Proc , vol.14 , pp. 438-444
    • Bunnoon, P.1    Chalermyanont, K.2    Limsakul, C.3
  • 9
    • 84859942718 scopus 로고    scopus 로고
    • Decomposition and statistical analysis for regional electricity demand forecasting
    • C.-H. Wang, G. Grozev, and S. Seo Decomposition and statistical analysis for regional electricity demand forecasting Energy 41 2012 313 325
    • (2012) Energy , vol.41 , pp. 313-325
    • Wang, C.-H.1    Grozev, G.2    Seo, S.3
  • 10
    • 34250215989 scopus 로고    scopus 로고
    • Modelling changes to electricity demand load duration curves as a consequence of predicted climate change for Australia
    • DOI 10.1016/j.energy.2006.12.005, PII S0360544206003495
    • M.J. Thatcher Modelling changes to electricity demand load duration curves as a consequence of predicted climate change for Australia Energy 32 2007 1647 1659 (Pubitemid 46898693)
    • (2007) Energy , vol.32 , Issue.9 , pp. 1647-1659
    • Thatcher, M.J.1
  • 11
    • 84862175858 scopus 로고    scopus 로고
    • Relationships between meteorological variables and monthly electricity demand
    • F. Apadula, A. Bassini, A. Elli, and S. Scapin Relationships between meteorological variables and monthly electricity demand Appl Energy 98 2012 346 356
    • (2012) Appl Energy , vol.98 , pp. 346-356
    • Apadula, F.1    Bassini, A.2    Elli, A.3    Scapin, S.4
  • 13
    • 84862026861 scopus 로고    scopus 로고
    • PREDICT - Decision support system for load forecasting and inference: A new undertaking for Brazilian power suppliers
    • Á.L. Santana, G.B. Conde, L.P. Rego, C.A. Rocha, D.L. Cardoso, and J.C.W. Costa et al. PREDICT - decision support system for load forecasting and inference: a new undertaking for Brazilian power suppliers Int J Electr Power Energy Syst 38 2012 33 45
    • (2012) Int J Electr Power Energy Syst , vol.38 , pp. 33-45
    • Santana, Á.L.1    Conde, G.B.2    Rego, L.P.3    Rocha, C.A.4    Cardoso, D.L.5    Costa, J.C.W.6
  • 15
    • 84864112283 scopus 로고    scopus 로고
    • Predicting the energy output of wind farms based on weather data: Important variables and their correlation
    • K. Vladislavleva, T. Friedrich, F. Neumann, and M. Wagner Predicting the energy output of wind farms based on weather data: important variables and their correlation Renew Energy 50 2013 236 243
    • (2013) Renew Energy , vol.50 , pp. 236-243
    • Vladislavleva, K.1    Friedrich, T.2    Neumann, F.3    Wagner, M.4
  • 16
    • 34250762015 scopus 로고    scopus 로고
    • Application of artificial neural networks for the wind speed prediction of target station using reference stations data
    • DOI 10.1016/j.renene.2006.12.001, PII S0960148106003429
    • M. Bilgili, B. Sahin, and A. Yasar Application of artificial neural networks for the wind speed prediction of target station using reference stations data Renew Energy 32 2007 2350 2360 (Pubitemid 46962976)
    • (2007) Renewable Energy , vol.32 , Issue.14 , pp. 2350-2360
    • Bilgili, M.1    Sahin, B.2    Yasar, A.3
  • 17
    • 84897418566 scopus 로고    scopus 로고
    • EFFLOCOM. Load Profiles; 2011. < http://www.sintef.no/Projectweb/ Efflocom/DisseminationDocumentation/ >.
    • (2011) EFFLOCOM. Load Profiles
  • 20
    • 84897385416 scopus 로고    scopus 로고
    • Load research for residential and commercial establishments in Gujarat
    • A. Garg, J. Maheshwari, and J. Upadhyay Load research for residential and commercial establishments in Gujarat Energy Conserv Commer 2010 < http://eco3.org/load-research-report-for-gujarat-1024/ >
    • (2010) Energy Conserv Commer
    • Garg, A.1    Maheshwari, J.2    Upadhyay, J.3
  • 21
    • 84892577847 scopus 로고    scopus 로고
    • Household energy consumption segmentation using hourly data
    • J. Kwac, J. Flora, and R. Rajagopal Household energy consumption segmentation using hourly data IEEE Trans Smart Grid 5 1 2014 420 430
    • (2014) IEEE Trans Smart Grid , vol.5 , Issue.1 , pp. 420-430
    • Kwac, J.1    Flora, J.2    Rajagopal, R.3
  • 23
    • 0030130753 scopus 로고    scopus 로고
    • Designing a neural network for forecasting financial and economic time series
    • DOI 10.1016/0925-2312(95)00039-9
    • I. Kaastra, and M. Boyd Designing a neural network for forecasting financial and economic time series Neurocomputing 10 1996 215 236 (Pubitemid 26133281)
    • (1996) Neurocomputing , vol.10 , Issue.3 , pp. 215-236
    • Kaastra, I.1    Boyd, M.2
  • 25
    • 84855292182 scopus 로고    scopus 로고
    • Energy models for demand forecasting - A review
    • L. Suganthi, and A.A. Samuel Energy models for demand forecasting - a review Renew Sustain Energy Rev 16 2012 1223 1240
    • (2012) Renew Sustain Energy Rev , vol.16 , pp. 1223-1240
    • Suganthi, L.1    Samuel, A.A.2
  • 26
    • 13944261973 scopus 로고    scopus 로고
    • Load forecasting performance enhancement when facing anomalous events
    • DOI 10.1109/TPWRS.2004.840439
    • J.N. Fidalgo, and J.A.P. Lopes Load forecasting performance enhancement when facing anomalous events IEEE Trans Power Syst 20 2005 408 415 (Pubitemid 40264513)
    • (2005) IEEE Transactions on Power Systems , vol.20 , Issue.1 , pp. 408-415
    • Fidalgo, J.N.1    Pecas Lopes, J.A.2
  • 28
    • 33846084200 scopus 로고    scopus 로고
    • Designing the input vector to ANN-based models for short-term load forecast in electricity distribution systems
    • DOI 10.1016/j.ijepes.2006.09.002, PII S0142061506001670
    • P.G. Santos, A. Martins, and A.J. Pires Designing the input vector to ANN-based models for short-term load forecast in electricity distribution systems Int J Electr Power Energy Syst 29 2007 338 347 (Pubitemid 46074135)
    • (2007) International Journal of Electrical Power and Energy Systems , vol.29 , Issue.4 , pp. 338-347
    • Santos, P.J.1    Martins, A.G.2    Pires, A.J.3
  • 29
    • 0033623037 scopus 로고    scopus 로고
    • Application of neural networks and sensitivity analysis to improved prediction of trauma survival
    • A. Hunter, L. Kennedy, J. Henry, and I. Ferguson Application of neural networks and sensitivity analysis to improved prediction of trauma survival Comput Methods Programs Biomed 62 2000 11 19
    • (2000) Comput Methods Programs Biomed , vol.62 , pp. 11-19
    • Hunter, A.1    Kennedy, L.2    Henry, J.3    Ferguson, I.4
  • 30
    • 80054796723 scopus 로고    scopus 로고
    • Forecasting building energy consumption using neural networks and hybrid neuro-fuzzy system: A comparative study
    • K. Li, H. Su, and J. Chu Forecasting building energy consumption using neural networks and hybrid neuro-fuzzy system: a comparative study Energy Build 43 2011 2893 2899
    • (2011) Energy Build , vol.43 , pp. 2893-2899
    • Li, K.1    Su, H.2    Chu, J.3
  • 31
    • 84897391501 scopus 로고    scopus 로고
    • Colorado Uo
    • Colorado Uo. Statistics overview: regression analysis; 2012. < www.colorado.edu/eeb/courses/2040/Lab-Data/documents/ StatisticsOverviewRegression.pdf >.
    • (2012) Statistics Overview: Regression Analysis
  • 32
    • 34249996860 scopus 로고    scopus 로고
    • The extrapolation of artificial neural networks for the modelling of rainfall-runoff relationships
    • P. Hettiarachchi, M.J. Hall, and A.W. Minns The extrapolation of artificial neural networks for the modelling of rainfall-runoff relationships J Hydroinformatics 7 2005 292 296
    • (2005) J Hydroinformatics , vol.7 , pp. 292-296
    • Hettiarachchi, P.1    Hall, M.J.2    Minns, A.W.3
  • 33
    • 0036698116 scopus 로고    scopus 로고
    • Multivariate synthetic streamflow generation using a hybrid model based on artificial neural networks
    • J.C. Ochoa-Rivera, R. García-Bartual, and J. Andreu Multivariate synthetic streamflow generation using a hybrid model based on artificial neural networks Hydrol Earth Syst Sci 6 2002 641 654
    • (2002) Hydrol Earth Syst Sci , vol.6 , pp. 641-654
    • Ochoa-Rivera, J.C.1    García-Bartual, R.2    Andreu, J.3
  • 34
    • 27944481218 scopus 로고    scopus 로고
    • An intelligent method for knowledge derived from limited data
    • IEEE Systems, Man and Cybernetics Society, Proceedings - 2005 International Conference on Systems, Man and Cybernetics
    • Chang FM. An intelligent method for knowledge derived from limited data. In: IEEE international conference on systems, man and cybernetics; 2005. p. 566-71. (Pubitemid 41674940)
    • (2005) Conference Proceedings - IEEE International Conference on Systems, Man and Cybernetics , vol.1 , pp. 566-571
    • Chang, F.M.1
  • 35
    • 33750297514 scopus 로고    scopus 로고
    • Short-term ANN load forecasting from limited data using generalization learning strategies
    • DOI 10.1016/j.neucom.2005.12.131, PII S0925231206001950
    • Z.S.H. Chan, H.W. Ngan, A.B. Rad, A.K. David, and N. Kasabov Short-term ANN load forecasting from limited data using generalization learning strategies Neurocomputing 70 2006 409 419 (Pubitemid 44615802)
    • (2006) Neurocomputing , vol.70 , Issue.1-3 , pp. 409-419
    • Chan, Z.S.H.1    Ngan, H.W.2    Rad, A.B.3    David, A.K.4    Kasabov, N.5
  • 38
    • 84859748944 scopus 로고    scopus 로고
    • Forecasting monthly peak demand of electricity in India - A critique
    • S.R. Rallapalli, and S. Ghosh Forecasting monthly peak demand of electricity in India - a critique Energy Policy 45 2012 516 520
    • (2012) Energy Policy , vol.45 , pp. 516-520
    • Rallapalli, S.R.1    Ghosh, S.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.