메뉴 건너뛰기




Volumn 40, Issue 1, 2012, Pages 85-93

Assessing the relevance of load profiling information in electrical load forecasting based on neural network models

Author keywords

Load forecast; Load profiling; Neural networks; Sensitivity analysis

Indexed keywords

DISTRIBUTION FEEDERS; ELECTRICAL LOAD FORECASTING; INPUT SPACE; LOAD DIAGRAM; LOAD FORECAST; LOAD PROFILES; LOAD PROFILING; MEAN ABSOLUTE PERCENTAGE ERROR; NEURAL NETWORK MODEL; PARTIAL DERIVATIVES; REAL DISTRIBUTION; SMALL TOWNS;

EID: 84860742606     PISSN: 01420615     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.ijepes.2012.02.008     Document Type: Article
Times cited : (43)

References (30)
  • 4
    • 0035248045 scopus 로고    scopus 로고
    • Neural networks for short-term load forecasting: A review and evaluation
    • DOI 10.1109/59.910780, PII S0885895001023069
    • H. Hippert, C. Pedreira, and R.C. Souza Neural networks for short-term load forecasting: a review and evaluation IEEE Trans Power Syst 16 1 2001 44 55 (Pubitemid 32297468)
    • (2001) IEEE Transactions on Power Systems , vol.16 , Issue.1 , pp. 44-55
    • Hippert, H.S.1    Pedreira, C.E.2    Souza, R.C.3
  • 5
    • 0031274057 scopus 로고    scopus 로고
    • Cascaded artificial neural networks for short-term load forecasting
    • A.S. AlFuhaid, M.A. El-Sayed, and M.S. Mahmoud Cascaded artificial neural networks for short-term load forecasting IEEE Trans Power Syst 12 4 1997 1524 1529 (Pubitemid 127771539)
    • (1997) IEEE Transactions on Power Systems , vol.12 , Issue.4 , pp. 1524-1529
    • Alfuhaid, A.S.1
  • 6
    • 77957550483 scopus 로고    scopus 로고
    • Monthly electricity demand forecasting based on a weighted evolving fuzzy neural network
    • P. Chang, C. Fan, and J. Lin Monthly electricity demand forecasting based on a weighted evolving fuzzy neural network Int J Electr Power Energy Syst 33 1 2011 17 27
    • (2011) Int J Electr Power Energy Syst , vol.33 , Issue.1 , pp. 17-27
    • Chang, P.1    Fan, C.2    Lin, J.3
  • 7
    • 77955228573 scopus 로고    scopus 로고
    • Short, medium and long term load forecasting model and virtual load forecaster based on radial basis function neural networks
    • C. Xia, J. Wang, and McMenemy Short, medium and long term load forecasting model and virtual load forecaster based on radial basis function neural networks Int J Electr Power Energy Syst 32 7 2010 743 750
    • (2010) Int J Electr Power Energy Syst , vol.32 , Issue.7 , pp. 743-750
    • Xia, C.1    Wang, J.2    McMenemy3
  • 8
    • 79952004139 scopus 로고    scopus 로고
    • Electricity price forecasting using artificial neural networks
    • D. Singhal, and K.S. Swarup Electricity price forecasting using artificial neural networks Int J Electr Power Energy Syst 33 3 2011 550 555
    • (2011) Int J Electr Power Energy Syst , vol.33 , Issue.3 , pp. 550-555
    • Singhal, D.1    Swarup, K.S.2
  • 11
    • 0028543366 scopus 로고
    • Training feedforward networks with the marquardt algorithm
    • M.T. Hagan, and M.B. Menhaj Training feedforward networks with the marquardt algorithm IEEE Trans Neural Netw 5 6 1994 989 993
    • (1994) IEEE Trans Neural Netw , vol.5 , Issue.6 , pp. 989-993
    • Hagan, M.T.1    Menhaj, M.B.2
  • 13
    • 13944261973 scopus 로고    scopus 로고
    • Load forecasting performance enhancement when facing anomalous events
    • DOI 10.1109/TPWRS.2004.840439
    • J.N. Fidalgo, and J.A. Peças Lopes Load forecasting performance enhancement when facing anomalous events IEEE Trans Power Syst 20 1 2005 408 415 (Pubitemid 40264513)
    • (2005) IEEE Transactions on Power Systems , vol.20 , Issue.1 , pp. 408-415
    • Fidalgo, J.N.1    Pecas Lopes, J.A.2
  • 14
    • 33846084200 scopus 로고    scopus 로고
    • Designing the input vector to ANN-based models for short-term load forecast in electricity distribution systems
    • DOI 10.1016/j.ijepes.2006.09.002, PII S0142061506001670
    • P. Santos, A. Martins, and A. Pires Designing the input vector to ANN-based models for short-term load forecast in electricity distribution systems Int J Electr Power Energy Syst 29 4 2007 338 347 (Pubitemid 46074135)
    • (2007) International Journal of Electrical Power and Energy Systems , vol.29 , Issue.4 , pp. 338-347
    • Santos, P.J.1    Martins, A.G.2    Pires, A.J.3
  • 15
    • 84861353542 scopus 로고    scopus 로고
    • Load pattern clustering for short-term load forecasting of anomalous days
    • Porto, Portugal, September 10-13
    • Chicco G, Napoli R, Piglione F. Load pattern clustering for short-term load forecasting of anomalous days. In: Proceedings of the IEEE PowerTech 2001, Porto, Portugal, September 10-13; 2001. p. 2.
    • (2001) Proceedings of the IEEE PowerTech 2001 , pp. 2
    • Chicco, G.1    Napoli, R.2
  • 17
    • 0030289955 scopus 로고    scopus 로고
    • A neural network based technique for short-term forecasting of anomalous load periods
    • R. Lamedica, A. Prudenzi, M. Sforna, M. Caciotta, and V. Cencellli A neural network based technique for short-term forecasting of anomalous load periods IEEE Trans Power Syst 11 4 1996 1749 1756 (Pubitemid 126781339)
    • (1996) IEEE Transactions on Power Systems , vol.11 , Issue.4 , pp. 1749-1756
    • Lamedica, R.1    Prudenzi, A.2
  • 19
    • 67349221521 scopus 로고    scopus 로고
    • Simultaneous input variable and basis function selection for RBF networks
    • J. Tikka Simultaneous input variable and basis function selection for RBF networks Elsevier Neurocomputing 72 10-12 2009 2649 2658
    • (2009) Elsevier Neurocomputing , vol.72 , Issue.1012 , pp. 2649-2658
    • Tikka, J.1
  • 20
    • 74949093989 scopus 로고    scopus 로고
    • ERSE - Energy Services Regulatory Authority document No. 4591-A/2007
    • ERSE - Energy Services Regulatory Authority (2007), Guide of Data Measuring, Reading and Availability, document No. 4591-A/2007.
    • (2007) Guide of Data Measuring, Reading and Availability
  • 21
    • 80051549047 scopus 로고    scopus 로고
    • Building load management using cluster and statistical analyses
    • P. Jota, V. Silva, and F. Jota Building load management using cluster and statistical analyses Int J Electr Power Energy Syst 33 8 2011 1498 1505
    • (2011) Int J Electr Power Energy Syst , vol.33 , Issue.8 , pp. 1498-1505
    • Jota, P.1    Silva, V.2    Jota, F.3
  • 22
    • 18944368045 scopus 로고    scopus 로고
    • Allocation of the load profiles to consumers using probabilistic neural networks
    • DOI 10.1109/TPWRS.2005.846236
    • D. Gerbec, S. Gasperic, I. Smon, and F. Gubina Allocation of the load profiles to consumers using probabilistic neural networks IEEE Trans Power Syst 20 2 2005 548 555 (Pubitemid 40699679)
    • (2005) IEEE Transactions on Power Systems , vol.20 , Issue.2 , pp. 548-555
    • Gerbec, D.1    Gasperic, S.2    Smon, I.3    Gubina, F.4
  • 24
    • 0033705116 scopus 로고    scopus 로고
    • Daily load profiles for residential, commercial and industrial low voltages consumers
    • J. Jardini, C. Tahan, S. Ahn, and F.M. Figueiredo Daily load profiles for residential, commercial and industrial low voltages consumers IEEE Trans Power Deliv 15 1 2000 375 380
    • (2000) IEEE Trans Power Deliv , vol.15 , Issue.1 , pp. 375-380
    • Jardini, J.1    Tahan, C.2    Ahn, S.3    Figueiredo, F.M.4
  • 25
    • 24944485152 scopus 로고    scopus 로고
    • Short-term load forecasting, profile identification, and customer segmentation: A methodology based on periodic time series
    • DOI 10.1109/TPWRS.2005.852123
    • M. Espinoza, C. Joye, R. Belmans, and B. DeMoor Short-term load forecasting, profile identification, and customer segmentation: a methodology based on periodic time series IEEE Trans Power Syst 20 3 2005 1622 1630 (Pubitemid 41300977)
    • (2005) IEEE Transactions on Power Systems , vol.20 , Issue.3 , pp. 1622-1630
    • Espinoza, M.1    Joye, C.2    Belmans, R.3    De Moor, B.4
  • 27
    • 84860773721 scopus 로고    scopus 로고
    • Integrating information available from load profiling in electric load forecasting
    • [15.06.11]
    • Sousa JC, Neves LP, Jorge HM. Integrating information available from load profiling in electric load forecasting. INESC Coimbra Research Report no. 17/2009. < http://www.inescc.pt/documentos/17-2009.pdf > [15.06.11].
    • INESC Coimbra Research Report No. 17/2009
    • Sousa, J.C.1    Neves, L.P.2    Jorge, H.M.3
  • 29
    • 0004302864 scopus 로고    scopus 로고
    • Cary, NC, USA: SAS Institute Inc. [revised 23.06.2000] [at 6-May-2011]
    • Sarle WS. How to measure importance of inputs. Cary, NC, USA: SAS Institute Inc. < ftp://ftp.sas.com/pub/neural/importance.html > [revised 23.06.2000] [at 6-May-2011].
    • How to Measure Importance of Inputs
    • Sarle, W.S.1
  • 30
    • 84860774855 scopus 로고    scopus 로고
    • Electricity load forecast using data streams techniques
    • A.R. Ganguly, J. Gama, O.A. Omitaomu, M.M. Gaber, R.R. Vatsavai, CRC Press Florida
    • J. Gama, and P.P. Rodrigues Electricity load forecast using data streams techniques A.R. Ganguly, J. Gama, O.A. Omitaomu, M.M. Gaber, R.R. Vatsavai, Knowledge discovery from sensor data 2008 CRC Press Florida 131 147
    • (2008) Knowledge Discovery from Sensor Data , pp. 131-147
    • Gama, J.1    Rodrigues, P.P.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.