메뉴 건너뛰기




Volumn 95, Issue 1, 2014, Pages 51-70

Using random forests to diagnose aviation turbulence

Author keywords

Air traffic; Aviation; Data fusion; Random forest; Thunderstorms; Turbulence; Weather

Indexed keywords

AIR; AIR TRAFFIC CONTROL; AIR TRANSPORTATION; ALGORITHMS; ATMOSPHERIC TURBULENCE; DATA FUSION; DECISION TREES; DOPPLER RADAR; GEOSTATIONARY SATELLITES; NASA; THUNDERSTORMS; TURBULENCE; WEATHER FORECASTING; WEATHERING;

EID: 84897110479     PISSN: 08856125     EISSN: 15730565     Source Type: Journal    
DOI: 10.1007/s10994-013-5346-7     Document Type: Article
Times cited : (83)

References (45)
  • 1
    • 77953492946 scopus 로고    scopus 로고
    • Objective satellite-based overshooting top detection using infrared window channel brightness temperature gradients
    • 10.1175/2009JAMC2286.1
    • Bedka, K. M., Brunner, J., Dworak, R., Feltz, W., Otkin, J., & Greenwald, T. (2010). Objective satellite-based overshooting top detection using infrared window channel brightness temperature gradients. Journal of Applied Meteorology and Climatology, 49, 181-202.
    • (2010) Journal of Applied Meteorology and Climatology , vol.49 , pp. 181-202
    • Bedka, K.M.1    Brunner, J.2    Dworak, R.3    Feltz, W.4    Otkin, J.5    Greenwald, T.6
  • 3
    • 0035478854 scopus 로고    scopus 로고
    • Random forests
    • 10.1023/A:1010933404324 1007.68152
    • Breiman, L. (2001). Random forests. Machine Learning, 45, 5-32.
    • (2001) Machine Learning , vol.45 , pp. 5-32
    • Breiman, L.1
  • 4
    • 33645427106 scopus 로고
    • Varied research efforts are under way to find means of avoiding air turbulence
    • Cornman, L. B., & Carmichael, B. (1993). Varied research efforts are under way to find means of avoiding air turbulence. ICAO Journal, 48, 10-15.
    • (1993) ICAO Journal , vol.48 , pp. 10-15
    • Cornman, L.B.1    Carmichael, B.2
  • 6
    • 0029208109 scopus 로고
    • Real-time estimation of atmospheric turbulence severity from in-situ aircraft measurements
    • 10.2514/3.46697
    • Cornman, L. B., Morse, C. S., & Cunning, G. (1995). Real-time estimation of atmospheric turbulence severity from in-situ aircraft measurements. Journal of Aircraft, 32, 171-177.
    • (1995) Journal of Aircraft , vol.32 , pp. 171-177
    • Cornman, L.B.1    Morse, C.S.2    Cunning, G.3
  • 10
    • 69649093347 scopus 로고    scopus 로고
    • An overview of lightning locating systems: History, techniques, and data uses, with an in-depth look at the U.S. NLDN
    • 10.1109/TEMC.2009.2023450
    • Cummins, K. L., & Murphy, M. J. (2009). An overview of lightning locating systems: history, techniques, and data uses, with an in-depth look at the U.S. NLDN. IEEE Transactions on Electromagnetic Compatibility, 51(3), 499-518.
    • (2009) IEEE Transactions on Electromagnetic Compatibility , vol.51 , Issue.3 , pp. 499-518
    • Cummins, K.L.1    Murphy, M.J.2
  • 12
    • 30644464444 scopus 로고    scopus 로고
    • Gene selection and classification of microarray data using random forest
    • 3 10.1186/1471-2105-7-3
    • Díaz-Uriarte, R., & de Andrés, S. A. (2006). Gene selection and classification of microarray data using random forest. BMC Bioinformatics, 7, 3.
    • (2006) BMC Bioinformatics , vol.7
    • Díaz-Uriarte, R.1    De Andrés, S.A.2
  • 14
    • 28844467501 scopus 로고    scopus 로고
    • (MCR Federal Report Br-M021/080-1), MCR Federal Inc., 175 Middlesex Turnpike, Bedford, MA 01730
    • Eichenbaum, H. (2003). Historical overview of turbulence accidents and case study analysis (MCR Federal Report Br-M021/080-1), 82 pp. Available from MCR Federal Inc., 175 Middlesex Turnpike, Bedford, MA 01730.
    • (2003) Historical Overview of Turbulence Accidents and Case Study Analysis , pp. 82
    • Eichenbaum, H.1
  • 15
    • 84872447245 scopus 로고    scopus 로고
    • Federal Aviation Administration Chap. 7. Available online at www.faa.gov/air-traffic/publications/atpubs/aim/
    • Federal Aviation Administration (2012). FAA aeronautical information manual. Chap. 7. Available online at www.faa.gov/air-traffic/publications/ atpubs/aim/.
    • (2012) FAA Aeronautical Information Manual
  • 18
    • 77958509258 scopus 로고    scopus 로고
    • Joint Planning and Development Office (JPDO) 432 http://ebookbrowse.com/ iwp-version-02-master-w-o-appendix-pdf-d90599595
    • Joint Planning and Development Office (JPDO) (2008). Integrated work plan for the next generation air transportation system. Version 0.2, 432 pp. http://ebookbrowse.com/iwp-version-02-master-w-o-appendix-pdf-d90599595.
    • (2008) Integrated Work Plan for the Next Generation Air Transportation System. Version 0.2
  • 19
    • 17844405885 scopus 로고    scopus 로고
    • Characterizing the severe turbulence environments associated with commercial aviation accidents. Part 1: A 44-case study synoptic observational analysis
    • 10.1007/s00703-004-0080-0
    • Kaplan, M. L., Huffman, A. W., Lux, K. M., Charney, J. J., Riordan, A. J., & Lin, Y.-L. (2005). Characterizing the severe turbulence environments associated with commercial aviation accidents. Part 1: a 44-case study synoptic observational analysis. Meteorology and Atmospheric Physics, 88, 129-153.
    • (2005) Meteorology and Atmospheric Physics , vol.88 , pp. 129-153
    • Kaplan, M.L.1    Huffman, A.W.2    Lux, K.M.3    Charney, J.J.4    Riordan, A.J.5    Lin, Y.-L.6
  • 20
    • 57149130293 scopus 로고    scopus 로고
    • Maximum flow rates for capacity estimation in level flight with convective weather constraints
    • Krozel, J., Mitchell, J. S. B., Polishchuk, V., & Prete, J. (2007). Maximum flow rates for capacity estimation in level flight with convective weather constraints. Air Traffic Control Quarterly, 15(3), 209-238.
    • (2007) Air Traffic Control Quarterly , vol.15 , Issue.3 , pp. 209-238
    • Krozel, J.1    Mitchell, J.S.B.2    Polishchuk, V.3    Prete, J.4
  • 21
    • 0038269173 scopus 로고    scopus 로고
    • An investigation of turbulence generation mechanisms above deep convection
    • 10.1175/1520-0469(2003)60<1297:AIOTGM>2.0.CO;2
    • Lane, T. P., Sharman, R. D., Clark, T. L., & Hsu, H.-M. (2003). An investigation of turbulence generation mechanisms above deep convection. J. Atmos. Sci., 60, 1297-1321.
    • (2003) J. Atmos. Sci. , vol.60 , pp. 1297-1321
    • Lane, T.P.1    Sharman, R.D.2    Clark, T.L.3    Hsu, H.-M.4
  • 22
    • 65349130707 scopus 로고    scopus 로고
    • Some influences of background flow conditions on the generation of turbulence due to gravity wave breaking above deep convection
    • 10.1175/2008JAMC1787.1
    • Lane, T. P., & Sharman, R. D. (2008). Some influences of background flow conditions on the generation of turbulence due to gravity wave breaking above deep convection. Journal of Applied Meteorology and Climatology, 47(11), 2777-2796.
    • (2008) Journal of Applied Meteorology and Climatology , vol.47 , Issue.11 , pp. 2777-2796
    • Lane, T.P.1    Sharman, R.D.2
  • 26
    • 84897108709 scopus 로고    scopus 로고
    • Enhancing understanding and improving prediction of severe weather through spatiotemporal relational learning
    • 10.1007/s10994-013-5343-x
    • McGovern, A., Gagne, D. J. II, Williams, J. K., Brown, R. A., & Basara, J. B. (2013). Enhancing understanding and improving prediction of severe weather through spatiotemporal relational learning. Machine Learning. doi: 10.1007/s10994-013-5343-x.
    • (2013) Machine Learning
    • McGovern, A.1    Gagne, I.I.D.J.2    Williams, J.K.3    Brown, R.A.4    Basara, J.B.5
  • 27
    • 80052423308 scopus 로고    scopus 로고
    • On oblique random forests
    • D. Gunopulos T. Hofmann D. Malerba M. Vazirgiannis (eds) Lecture notes in computer science Springer Berlin 10.1007/978-3-642-23783-6-29
    • Menze, B., Kelm, B. M., Splitthoff, D., Koethe, U., & Hamprecht, F. (2011). On oblique random forests. In D. Gunopulos, T. Hofmann, D. Malerba, & M. Vazirgiannis (Eds.), Lecture notes in computer science: Machine learning and knowledge discovery in databases (pp. 453-469). Berlin: Springer.
    • (2011) Machine Learning and Knowledge Discovery in Databases , pp. 453-469
    • Menze, B.1    Kelm, B.M.2    Splitthoff, D.3    Koethe, U.4    Hamprecht, F.5
  • 28
    • 13344278660 scopus 로고    scopus 로고
    • Random forest classifier for remote sensing classification
    • 10.1080/01431160412331269698
    • Pal, M. (2005). Random forest classifier for remote sensing classification. International Journal of Remote Sensing, 26(1), 217-222.
    • (2005) International Journal of Remote Sensing , vol.26 , Issue.1 , pp. 217-222
    • Pal, M.1
  • 29
    • 0000322510 scopus 로고
    • The critical success index as an indicator of warning skill
    • 10.1175/1520-0434(1990)005<0570:TCSIAA>2.0.CO;2
    • Schaefer, J. T. (1990). The critical success index as an indicator of warning skill. Weather and Forecasting, 5, 570-575.
    • (1990) Weather and Forecasting , vol.5 , pp. 570-575
    • Schaefer, J.T.1
  • 30
    • 0030437221 scopus 로고    scopus 로고
    • The quantitative use of PIREPs in developing aviation weather guidance products
    • 10.1175/1520-0434(1996)011<0372:TQUOPI>2.0.CO;2
    • Schwartz, B. (1996). The quantitative use of PIREPs in developing aviation weather guidance products. Weather and Forecasting, 11, 372-384.
    • (1996) Weather and Forecasting , vol.11 , pp. 372-384
    • Schwartz, B.1
  • 32
    • 33745824235 scopus 로고    scopus 로고
    • An integrated approach to mid-and upper-level turbulence forecasting
    • 10.1175/WAF924.1
    • Sharman, R., Tebaldi, C., Wiener, G., & Wolff, J. (2006b). An integrated approach to mid-and upper-level turbulence forecasting. Weather and Forecasting, 21, 268-287.
    • (2006) Weather and Forecasting , vol.21 , pp. 268-287
    • Sharman, R.1    Tebaldi, C.2    Wiener, G.3    Wolff, J.4
  • 34
    • 33847096395 scopus 로고    scopus 로고
    • Bias in random forest variable importance measures: Illustrations, sources and a solution
    • 25 10.1186/1471-2105-8-25
    • Strobl, C., Boulesteix, A.-L., Zeileis, A., & Hothorn, T. (2007). Bias in random forest variable importance measures: illustrations, sources and a solution. BMC Bioinformatics, 8, 25.
    • (2007) BMC Bioinformatics , vol.8
    • Strobl, C.1    Boulesteix, A.-L.2    Zeileis, A.3    Hothorn, T.4
  • 35
    • 68249159697 scopus 로고    scopus 로고
    • Convection-permitting simulations of the environment supporting widespread turbulence within the upper-level outflow of a mesoscale convective system
    • 10.1175/2008MWR2770.1
    • Trier, S. B., & Sharman, R. D. (2009). Convection-permitting simulations of the environment supporting widespread turbulence within the upper-level outflow of a mesoscale convective system. Monthly Weather Review, 137, 1972-1990.
    • (2009) Monthly Weather Review , vol.137 , pp. 1972-1990
    • Trier, S.B.1    Sharman, R.D.2
  • 36
    • 84862890437 scopus 로고    scopus 로고
    • Influences of moist convection on a cold-season outbreak of clear-air turbulence (CAT)
    • 10.1175/MWR-D-11-00353.1
    • Trier, S. B., Sharman, R. D., & Lane, T. P. (2012). Influences of moist convection on a cold-season outbreak of clear-air turbulence (CAT). Monthly Weather Review, 140, 2477-2496.
    • (2012) Monthly Weather Review , vol.140 , pp. 2477-2496
    • Trier, S.B.1    Sharman, R.D.2    Lane, T.P.3
  • 41
    • 84860531726 scopus 로고    scopus 로고
    • Reinforcement learning of optimal controls
    • S. E. Haupt A. Pasini C. Marzban (eds) 10.1007/978-1-4020-9119-3-15
    • Williams, J. K. (2009). Reinforcement learning of optimal controls. In S. E. Haupt, A. Pasini, & C. Marzban (Eds.), Artificial intelligence methods in the environmental sciences (pp. 297-327).
    • (2009) Artificial Intelligence Methods in the Environmental Sciences , pp. 297-327
    • Williams, J.K.1
  • 43
    • 10644275251 scopus 로고    scopus 로고
    • Tropopause folding at satellite-observed spatial gradients: 2. Development of an empirical model
    • D19307 10.1029/2003JD004146
    • Wimmers, A. J., & Moody, J. L. (2004). Tropopause folding at satellite-observed spatial gradients: 2. development of an empirical model. Journal of Geophysical Research, 109, D19307.
    • (2004) Journal of Geophysical Research , vol.109
    • Wimmers, A.J.1    Moody, J.L.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.