메뉴 건너뛰기




Volumn 15, Issue , 2014, Pages 565-593

Link prediction in graphs with autoregressive features

Author keywords

Autoregression; Graphs; Link prediction; Low rank; Sparsity

Indexed keywords

NUMERICAL METHODS; REGRESSION ANALYSIS; VALUE ENGINEERING;

EID: 84897046046     PISSN: 15324435     EISSN: 15337928     Source Type: Journal    
DOI: None     Document Type: Article
Times cited : (31)

References (42)
  • 1
    • 64149107285 scopus 로고    scopus 로고
    • A new approach to collaborative filtering: Operator estimation with spectral regularization
    • J. Abernethy, F. Bach, T. Evgeniou, and J.-P. Vert. A new approach to collaborative filtering: Operator estimation with spectral regularization. Journal of Machine Learning Research, 10:803-826, 2009.
    • (2009) Journal of Machine Learning Research , vol.10 , pp. 803-826
    • Abernethy, J.1    Bach, F.2    Evgeniou, T.3    Vert, J.-P.4
  • 3
    • 85014561619 scopus 로고    scopus 로고
    • A fast iterative shrinkage-thresholding algorithm for linear inverse problems
    • A. Beck and M. Teboulle. A fast iterative shrinkage-thresholding algorithm for linear inverse problems. SIAM Journal of Imaging Sciences, 2(1):183-202, 2009.
    • (2009) SIAM Journal of Imaging Sciences , vol.2 , Issue.1 , pp. 183-202
    • Beck, A.1    Teboulle, M.2
  • 4
    • 84867120454 scopus 로고    scopus 로고
    • Incremental gradient, subgradient, and proximal methods for convex optimization: A survey
    • D. P. Bertsekas. Incremental gradient, subgradient, and proximal methods for convex optimization: a survey. Optimization for Machine Learning, page 85, 2011.
    • (2011) Optimization for Machine Learning , pp. 85
    • Bertsekas, D.P.1
  • 5
    • 68649086910 scopus 로고    scopus 로고
    • Simultaneous analysis of lasso and Dantzig selector
    • P. J. Bickel, Y. Ritov, and A. B. Tsybakov. Simultaneous analysis of lasso and Dantzig selector. Ann. Statist., 37(4):1705-1732, 2009.
    • (2009) Ann. Statist. , vol.37 , Issue.4 , pp. 1705-1732
    • Bickel, P.J.1    Ritov, Y.2    Tsybakov, A.B.3
  • 8
    • 77951528523 scopus 로고    scopus 로고
    • The power of convex relaxation: Near-optimal matrix completion
    • E. J. Candès and T. Tao. The power of convex relaxation: Near-optimal matrix completion. Information Theory, IEEE Transactions on, 56(5), 2009.
    • (2009) Information Theory IEEE Transactions on , vol.56 , Issue.5
    • Candès, E.J.1    Tao, T.2
  • 9
  • 14
    • 80054004560 scopus 로고    scopus 로고
    • Sharp oracle inequalities for high-dimensional matrix prediction
    • oct.
    • S. Gaïffas and G. Lecué. Sharp oracle inequalities for high-dimensional matrix prediction. Information Theory, IEEE Transactions on, 57(10):6942 -6957, oct. 2011.
    • (2011) Information Theory, IEEE Transactions on , vol.57 , Issue.10 , pp. 6942-6957
    • Gaïffas, S.1    Lecué, G.2
  • 15
    • 67649958523 scopus 로고    scopus 로고
    • The time-series link prediction problem with applications in communication surveillance
    • Z. Huang and D. K. J. Lin. The time-series link prediction problem with applications in communication surveillance. INFORMS J. on Computing, 21(2):286-303, 2009.
    • (2009) INFORMS J. on Computing , vol.21 , Issue.2 , pp. 286-303
    • Huang, Z.1    Lin, D.K.J.2
  • 17
  • 18
    • 72249100613 scopus 로고    scopus 로고
    • The Dantzig selector and sparsity oracle inequalities
    • V. Koltchinskii. The Dantzig selector and sparsity oracle inequalities. Bernoulli, 15(3): 799-828, 2009b.
    • (2009) Bernoulli , vol.15 , Issue.3 , pp. 799-828
    • Koltchinskii, V.1
  • 19
    • 82655171609 scopus 로고    scopus 로고
    • Nuclear-norm penalization and optimal rates for noisy low-rank matrix completion
    • V. Koltchinskii, K. Lounici, and A. B. Tsybakov. Nuclear-norm penalization and optimal rates for noisy low-rank matrix completion. Ann. Statist., 39(5):2302-2329, 2011.
    • (2011) Ann. Statist. , vol.39 , Issue.5 , pp. 2302-2329
    • Koltchinskii, V.1    Lounici, K.2    Tsybakov, A.B.3
  • 21
    • 77950364314 scopus 로고    scopus 로고
    • Collaborative filtering with temporal dynamics
    • Y. Koren. Collaborative filtering with temporal dynamics. Communications of the ACM, 53(4):89-97, 2010.
    • (2010) Communications of the ACM , vol.534 , Issue.89-97
    • Koren, Y.1
  • 22
    • 0039119760 scopus 로고
    • The convex analysis of unitarily invariant matrix functions
    • A. S. Lewis. The convex analysis of unitarily invariant matrix functions. J. Convex Anal., 2(1-2):173-183, 1995.
    • (1995) J. Convex Anal. , vol.2 , Issue.1-2 , pp. 173-183
    • Lewis, A.S.1
  • 26
    • 78651239444 scopus 로고    scopus 로고
    • Autoregressive process modeling via the lasso procedure
    • Y. Nardi and A. Rinaldo. Autoregressive process modeling via the lasso procedure. Journal of Multivariate Analysis, 102(3):528-549, 2011.
    • (2011) Journal of Multivariate Analysis , vol.102 , Issue.3 , pp. 528-549
    • Nardi, Y.1    Rinaldo, A.2
  • 27
    • 17444406259 scopus 로고    scopus 로고
    • Smooth minimization of non-smooth functions
    • DOI 10.1007/s10107-004-0552-5
    • Y. Nesterov. Smooth minimization of non-smooth functions. Mathematical Programming, 103(1):127-152, 2005. (Pubitemid 40537674)
    • (2005) Mathematical Programming , vol.103 , Issue.1 , pp. 127-152
    • Nesterov, Yu.1
  • 34
    • 84866883937 scopus 로고    scopus 로고
    • Adaptive thresholding for reconstructing regulatory networks from time course gene expression data
    • A. Shojaie, S. Basu, and G. Michailidis. Adaptive thresholding for reconstructing regulatory networks from time course gene expression data. Statistics In Biosciences, 2011.
    • (2011) Statistics in Biosciences
    • Shojaie, A.1    Basu, S.2    Michailidis, G.3
  • 37
    • 84864315555 scopus 로고    scopus 로고
    • User-friendly tail bounds for sums of random matrices
    • J. A. Tropp. User-friendly tail bounds for sums of random matrices. Foundations of Computational Mathematics, 12(4):389-434, 2012.
    • (2012) Foundations of Computational Mathematics , vol.124 , pp. 389-434
    • Tropp, J.A.1
  • 40
    • 77955054299 scopus 로고    scopus 로고
    • On the conditions used to prove oracle results for the Lasso
    • S. A. van de Geer and P. Bühlmann. On the conditions used to prove oracle results for the Lasso. Electron. J. Stat., 3:1360-1392, 2009.
    • (2009) Electron. J. Stat. , vol.3 , pp. 1360-1392
    • Geer De Van, S.A.1    Bühlmann, P.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.