메뉴 건너뛰기




Volumn , Issue , 2011, Pages

Continuous-time regression models for longitudinal networks

Author keywords

[No Author keywords available]

Indexed keywords

LEARNING SYSTEMS; REGRESSION ANALYSIS;

EID: 85162324018     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (75)

References (30)
  • 2
    • 77958566736 scopus 로고    scopus 로고
    • Discovering long range properties of social networks with multivalued time-inhomogeneous models
    • D. Wyatt, T. Choudhury, and J. Bilmes. Discovering long range properties of social networks with multivalued time-inhomogeneous models. In Proc. 24th AAAI Conf. on AI, 2010.
    • (2010) Proc. 24th AAAI Conf. on AI
    • Wyatt, D.1    Choudhury, T.2    Bilmes, J.3
  • 3
    • 85162472140 scopus 로고    scopus 로고
    • A separable model for dynamic networks
    • November
    • P. N. Krivitsky and M. S. Handcock. A separable model for dynamic networks. Under review, November 2010. http://arxiv.org/abs/1011.1937.
    • (2010) Under Review
    • Krivitsky, P.N.1    Handcock, M.S.2
  • 5
    • 84862284477 scopus 로고    scopus 로고
    • A dynamic relational infinite feature model for longitudinal social networks
    • volume 15 of JMLR W&C Proceedings
    • J. Foulds, C. DuBois, A. Asuncion, C. Butts, and P. Smyth. A dynamic relational infinite feature model for longitudinal social networks. In AI and Statistics, volume 15 of JMLR W&C Proceedings, pages 287-295, 2011.
    • (2011) AI and Statistics , pp. 287-295
    • Foulds, J.1    Dubois, C.2    Asuncion, A.3    Butts, C.4    Smyth, P.5
  • 8
    • 54049156450 scopus 로고    scopus 로고
    • A relational event framework for social action
    • C. T. Butts. A relational event framework for social action. Soc. Meth., 38(1):155-200, 2008.
    • (2008) Soc. Meth , vol.38 , Issue.1 , pp. 155-200
    • Butts, C.T.1
  • 10
    • 84925907203 scopus 로고
    • A dynamic model for social networks
    • P. Holland and S. Leinhardt. A dynamic model for social networks. J. Math. Soc., 5:5-20, 1977.
    • (1977) J. Math. Soc , vol.5 , pp. 5-20
    • Holland, P.1    Leinhardt, S.2
  • 12
    • 85162425930 scopus 로고    scopus 로고
    • Point process modeling for directed interaction networks
    • October
    • P. O. Perry and P. J. Wolfe. Point process modeling for directed interaction networks. Under review, October 2011. http://arxiv.org/abs/1011. 1703.
    • (2011) Under Review
    • Perry, P.O.1    Wolfe, P.J.2
  • 13
    • 0000336139 scopus 로고
    • Regression models and life-tables
    • D. R. Cox. Regression models and life-tables. J. Roy. Stat. Soc., Series B, 34:187-220, 1972.
    • (1972) J. Roy. Stat. Soc., Series B , vol.34 , pp. 187-220
    • Cox, D.R.1
  • 15
    • 65749090652 scopus 로고    scopus 로고
    • Patterns and dynamics of users' behavior and interaction: Network analysis of an online community
    • P. Panzarasa, T. Opsahl, and K. M. Carley. Patterns and dynamics of users' behavior and interaction: Network analysis of an online community. J. Amer. Soc. for Inf. Sci. and Tech., 60(5):911-932, 2009.
    • (2009) J. Amer. Soc. for Inf. Sci. and Tech , vol.60 , Issue.5 , pp. 911-932
    • Panzarasa, P.1    Opsahl, T.2    Carley, K.M.3
  • 16
    • 30344443646 scopus 로고    scopus 로고
    • Empirical analysis of an evolving social network
    • G. Kossinets and D. J. Watts. Empirical analysis of an evolving social network. Science, 311(5757):88-90, 2006.
    • (2006) Science , vol.311 , Issue.5757 , pp. 88-90
    • Kossinets, G.1    Watts, D.J.2
  • 19
    • 36849035459 scopus 로고    scopus 로고
    • Dynamic social network analysis using latent space models
    • P. Sarkar and A. Moore. Dynamic social network analysis using latent space models. SIGKDD Explorations, 7(2):31-40, 2005.
    • (2005) SIGKDD Explorations , vol.7 , Issue.2 , pp. 31-40
    • Sarkar, P.1    Moore, A.2
  • 20
    • 84861853557 scopus 로고    scopus 로고
    • Evolving cluster mixed-membership blockmodel for time-varying networks
    • volume 15 of JMLR W&C Proceedings
    • Q. Ho, L. Song, and E. Xing. Evolving cluster mixed-membership blockmodel for time-varying networks. In AI and Statistics, volume 15 of JMLR W&C Proceedings, pages 342-350, 2011.
    • (2011) AI and Statistics , pp. 342-350
    • Ho, Q.1    Song, L.2    Xing, E.3
  • 23
    • 67849135609 scopus 로고    scopus 로고
    • Recovering time-varying networks of dependencies in social and biological studies
    • A. Ahmed and E. P. Xing. Recovering time-varying networks of dependencies in social and biological studies. Proc. Natl. Acad. Scien., 106(29):11878-11883, 2009.
    • (2009) Proc. Natl. Acad. Scien , vol.106 , Issue.29 , pp. 11878-11883
    • Ahmed, A.1    Xing, E.P.2
  • 25
    • 2242444502 scopus 로고    scopus 로고
    • Efficient estimation and inferences for varying-coefficient models
    • Z. Cai, J. Fan, and R. Li. Efficient estimation and inferences for varying-coefficient models. J. Amer. Stat. Assn., 95(451):888-902, 2000.
    • (2000) J. Amer. Stat. Assn , vol.95 , Issue.451 , pp. 888-902
    • Cai, Z.1    Fan, J.2    Li, R.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.