메뉴 건너뛰기




Volumn 2, Issue , 2006, Pages 313-327

An empirical study of univariate and genetic algorithm-based feature selection in binary classification with microarray data

Author keywords

Cross validation; Feature selection; Genetic algorithm; Supervised learning

Indexed keywords

ALGORITHM; ARTICLE; BRAIN CANCER; COLON CANCER; CONTROLLED STUDY; EMPIRICISM; GENETIC ALGORITHM; GENETIC ANALYSIS; GENETIC SELECTION; HUMAN; LEUKEMIA; LYMPHOMA; MICROARRAY ANALYSIS; MULTIVARIATE ANALYSIS; PREDICTION; PROSTATE CANCER; UNIVARIATE ANALYSIS; DNA MICROARRAY; FEATURE SELECTION; LEARNING ALGORITHM; OPTIMISM; SELECTION BIAS;

EID: 33750623605     PISSN: 11769351     EISSN: 11769351     Source Type: Journal    
DOI: 10.1177/117693510600200016     Document Type: Article
Times cited : (37)

References (39)
  • 2
  • 3
    • 33750622549 scopus 로고    scopus 로고
    • Affymetrix. Technical manual: Affymetrix
    • Affymetrix. 2000. Genechip expression analysis. Technical manual: Affymetrix.
    • (2000) Genechip Expression Analysis
  • 5
    • 0033536012 scopus 로고    scopus 로고
    • Broad patterns of gene expression revealed by clustering analysis of tumor and normal colon tissues probed by oligonucleotide arrays
    • Alon, U., Barkai, N. and Notterman, D. et al. 1999. Broad patterns of gene expression revealed by clustering analysis of tumor and normal colon tissues probed by oligonucleotide arrays. Proc. Natl. Acad. Sci., 6745-6750.
    • (1999) Proc. Natl. Acad. Sci. , pp. 6745-6750
    • Alon, U.1    Barkai, N.2    Notterman, D.3
  • 7
    • 0141855279 scopus 로고    scopus 로고
    • A comprehensive approach to the analysis of matrix-assisted laser desorption/ionization-time of flight proteomics spectra from serum samples
    • Baggerly, K., Morris. J. and Wang, J. et al. 2003. A comprehensive approach to the analysis of matrix-assisted laser desorption/ionization-time of flight proteomics spectra from serum samples. Proteomics, 3(9):1667-72.
    • (2003) Proteomics , vol.3 , Issue.9 , pp. 1667-1672
    • Baggerly, K.1    Morris, J.2    Wang, J.3
  • 8
    • 0035923521 scopus 로고    scopus 로고
    • Classification of human lung carcinomas by mRNA expression profiling reveals distinct adenocarcinoma subclasses
    • Bhattacharjee, A., Richards, W.G. and Staunton, J. et al. 2001. Classification of human lung carcinomas by mRNA expression profiling reveals distinct adenocarcinoma subclasses. Proceedings of the National Academy of Sciences of the U.S.A., 98(24):13790-13795.
    • (2001) Proceedings of the National Academy of Sciences of the U.S.A. , vol.98 , Issue.24 , pp. 13790-13795
    • Bhattacharjee, A.1    Richards, W.G.2    Staunton, J.3
  • 9
    • 1342330535 scopus 로고    scopus 로고
    • Is cross-validation valid for small-sample microarray classification?
    • Braga-Neto, U. and Dougherty, E. 2004. Is cross-validation valid for small-sample microarray classification? Bioinformatics, 20(3):374-380.
    • (2004) Bioinformatics , vol.20 , Issue.3 , pp. 374-380
    • Braga-Neto, U.1    Dougherty, E.2
  • 11
    • 3342964832 scopus 로고    scopus 로고
    • Classification in Microarray Experiments
    • Speed T, ed. Boca Raton, FL: Chapman and Hall/CRC
    • Dudoit, S. and Fridlyand, J. 2003. Classification in Microarray Experiments. In Speed T, ed. Statistical Analysis of Gene Expression Microarray Data. Boca Raton, FL: Chapman and Hall/CRC. p. 93-158.
    • (2003) Statistical Analysis of Gene Expression Microarray Data , pp. 93-158
    • Dudoit, S.1    Fridlyand, J.2
  • 12
    • 84950461478 scopus 로고    scopus 로고
    • Estimating the error rate of a prediction rule: Improvement on cross-validation
    • Efron, B. Estimating the error rate of a prediction rule: improvement on cross-validation. Journal of the American Statistical Association, 78(382):316-331.
    • Journal of the American Statistical Association , vol.78 , Issue.382 , pp. 316-331
    • Efron, B.1
  • 14
    • 0012141368 scopus 로고    scopus 로고
    • A Survey of Evolutionary Algorithms for Data Mining and Knowledge Discovery
    • Ghosh A and Tsutsui S, eds. Springer-Verlag
    • Freitas, A. 2001. A Survey of Evolutionary Algorithms for Data Mining and Knowledge Discovery. In Ghosh A and Tsutsui S, eds. Advances in Evolutionary Computing. Springer-Verlag.
    • (2001) Advances in Evolutionary Computing
    • Freitas, A.1
  • 15
    • 0033569406 scopus 로고    scopus 로고
    • Molecular classification of cancer: Class discovery and class prediction by gene expression monitoring
    • Golub, T., Slonim, D. and Tamayo, P. et al. 1999. Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. Science, 286:531-537.
    • (1999) Science , vol.286 , pp. 531-537
    • Golub, T.1    Slonim, D.2    Tamayo, P.3
  • 20
    • 0035664710 scopus 로고    scopus 로고
    • Gene assessment and sample classification for gene expression data using a genetic algorithm/k-nearest neighbor method
    • Li, L., Darden, T. and Weinberg, C. et al. 2001. Gene assessment and sample classification for gene expression data using a genetic algorithm/k-nearest neighbor method. Combinatorial Chemistry and High Throughput Screening, 4(8):727-739.
    • (2001) Combinatorial Chemistry and High Throughput Screening , vol.4 , Issue.8 , pp. 727-739
    • Li, L.1    Darden, T.2    Weinberg, C.3
  • 21
    • 20744448405 scopus 로고    scopus 로고
    • Multiclass cancer classification and biomarker discorvery using GA-based algorithms
    • Liu, J. Cutler, G. and Li, W. et al. 2005. Multiclass cancer classification and biomarker discorvery using GA-based algorithms. Bioinformatics, 21(11):2691-2697.
    • (2005) Bioinformatics , vol.21 , Issue.11 , pp. 2691-2697
    • Liu, J.1    Cutler, G.2    Li, W.3
  • 24
    • 25144494760 scopus 로고    scopus 로고
    • Prediction error estimation: A comparison of resampling methods
    • Molinaro, A., Simon, R. and Pfeiffer, R. 2005A. Prediction error estimation: a comparison of resampling methods. Bioinformatics, 21(15):3301-3307.
    • (2005) Bioinformatics , vol.21 , Issue.15 , pp. 3301-3307
    • Molinaro, A.1    Simon, R.2    Pfeiffer, R.3
  • 26
    • 2942511492 scopus 로고    scopus 로고
    • Cancer characterization and feature set extraction by discriminative margin clustering
    • Munagala, K., Tibshirani, R. and Brown, P. 2004. Cancer characterization and feature set extraction by discriminative margin clustering. BMC Binformatics, 19:21.
    • (2004) BMC Binformatics , vol.19 , pp. 21
    • Munagala, K.1    Tibshirani, R.2    Brown, P.3
  • 27
    • 0037381008 scopus 로고    scopus 로고
    • Gene expression-based classification of malignant gliomas correlates better with survival than histological classification
    • Nutt, C., Mani, D. and Betensky, R. et al. 2003. Gene expression-based classification of malignant gliomas correlates better with survival than histological classification. Cancer Research, 63:1602-1607.
    • (2003) Cancer Research , vol.63 , pp. 1602-1607
    • Nutt, C.1    Mani, D.2    Betensky, R.3
  • 28
    • 0037165140 scopus 로고    scopus 로고
    • Prediction of central nervous system embryonal tumour outcome based on gene expression
    • Pomeroy, S., Tamayo, P. and Gaasebeek, M. et al. 2002. Prediction of central nervous system embryonal tumour outcome based on gene expression. Nature, 415:436-442.
    • (2002) Nature , vol.415 , pp. 436-442
    • Pomeroy, S.1    Tamayo, P.2    Gaasebeek, M.3
  • 29
    • 0037142053 scopus 로고    scopus 로고
    • The use of molecular profiling to predict survival after chemotherapy for diffuse large-B-cell lymphoma
    • Rosenwald, A., Wright, G. and Chan, W. et al. The use of molecular profiling to predict survival after chemotherapy for diffuse large-B-cell lymphoma. New England Journal of Medicine, 346(25):1937-1947.
    • New England Journal of Medicine , vol.346 , Issue.25 , pp. 1937-1947
    • Rosenwald, A.1    Wright, G.2    Chan, W.3
  • 30
    • 0034050902 scopus 로고    scopus 로고
    • Systematic variation in gene expression patterns in human cancer cell lines
    • Ross, D., Scherf, U. and Eisen, M. et al. 2000. Systematic variation in gene expression patterns in human cancer cell lines. Nature Genetics, 24:227-235.
    • (2000) Nature Genetics , vol.24 , pp. 227-235
    • Ross, D.1    Scherf, U.2    Eisen, M.3
  • 31
    • 18244409933 scopus 로고    scopus 로고
    • Diffuse large B-cell lymphoma outcome prediction by gene-expression profiling and supervised machine learning
    • Shipp, M., Ross, K. and Tamayo, P. et al. 2002. Diffuse large B-cell lymphoma outcome prediction by gene-expression profiling and supervised machine learning. Nature Medicine, 8:68-74.
    • (2002) Nature Medicine , vol.8 , pp. 68-74
    • Shipp, M.1    Ross, K.2    Tamayo, P.3
  • 32
    • 19044391072 scopus 로고    scopus 로고
    • Gene Expression Correlates of Clinical Prostate Cancer Behavior
    • Singh, D., Febbo, P. and Ross, K. et al. 2002. Gene Expression Correlates of Clinical Prostate Cancer Behavior. Cancer Cell, 1:203-209.
    • (2002) Cancer Cell , vol.1 , pp. 203-209
    • Singh, D.1    Febbo, P.2    Ross, K.3
  • 33
    • 0344441000 scopus 로고    scopus 로고
    • Diagnostic and prognostic prediction using gene expression profiles in high-dimensional microarray data
    • Simon, R. 2003A. Diagnostic and prognostic prediction using gene expression profiles in high-dimensional microarray data. British Journal of Cancer, 89:1599-1604.
    • (2003) British Journal of Cancer , vol.89 , pp. 1599-1604
    • Simon, R.1
  • 34
    • 0037245343 scopus 로고    scopus 로고
    • Pitfalls in the analysis of DNA microarray data for diagnostic and prognostic classification
    • Simon, R., Radmacher, M. and Dobbin, K. 2003B. Pitfalls in the analysis of DNA microarray data for diagnostic and prognostic classification. Journal of the National Cancer Institute, 95(1):14-18.
    • (2003) Journal of the National Cancer Institute , vol.95 , Issue.1 , pp. 14-18
    • Simon, R.1    Radmacher, M.2    Dobbin, K.3
  • 36
    • 33746673810 scopus 로고    scopus 로고
    • Merging microarray data, robust feature selection, and predicting prognosis in prostate cancer
    • Wang, J., Do, K. and Wen, S. et al. 2006. Merging microarray data, robust feature selection, and predicting prognosis in prostate cancer. Cancer Informatics, 2:87-97.
    • (2006) Cancer Informatics , vol.2 , pp. 87-97
    • Wang, J.1    Do, K.2    Wen, S.3
  • 37
    • 17044407257 scopus 로고    scopus 로고
    • Feature Selection in Microarray Analysis
    • Berrar D et al., eds. Kluwer Academic Publishers
    • Xing, E. 2002. Feature Selection in Microarray Analysis. In Berrar D et al., eds. A Practical Approach to Microarray Data Analysis. Kluwer Academic Publishers. p. 110-131.
    • (2002) A Practical Approach to Microarray Data Analysis , pp. 110-131
    • Xing, E.1
  • 38
    • 0035184851 scopus 로고    scopus 로고
    • Biomarker identification by feature wrappers
    • Xiong, M., Fang, X. and Zhao, J. 2001. Biomarker identification by feature wrappers. Genome Research, 11:1878-1887.
    • (2001) Genome Research , vol.11 , pp. 1878-1887
    • Xiong, M.1    Fang, X.2    Zhao, J.3
  • 39
    • 0034869983 scopus 로고    scopus 로고
    • Normalization for cDNA microarrya data
    • Bittner M, Chen Y, Dorsel A, et al., eds. of Proc. SPIE
    • Yang, Y., Speed, T., Dudoit, S. and Luu, P. 2001. Normalization for cDNA microarrya data. In Bittner M, Chen Y, Dorsel A, et al., eds. Microarrays: Optical Technologies and Informatics. Volume 4266 of Proc. SPIE. p. 141-152.
    • (2001) Microarrays: Optical Technologies and Informatics , vol.4266 , pp. 141-152
    • Yang, Y.1    Speed, T.2    Dudoit, S.3    Luu, P.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.