메뉴 건너뛰기




Volumn 21, Issue 3, 2014, Pages 219-233

Detection of structural variants involving repetitive regions in the reference genome

Author keywords

algorithms; alignment; combinatorics; genomic rearrangements; genomics; graph theory; sequence analysis

Indexed keywords

ARTICLE; CHROMOSOME MAP; ESCHERICHIA COLI; GENETIC VARIABILITY; GENETICS; GENOME; HIGH THROUGHPUT SEQUENCING; HUMAN; METAGENOMICS; MUTATION; NUCLEOTIDE REPEAT; TRANSPOSON;

EID: 84896786332     PISSN: 10665277     EISSN: None     Source Type: Journal    
DOI: 10.1089/cmb.2013.0129     Document Type: Article
Times cited : (14)

References (34)
  • 1
    • 79954672317 scopus 로고    scopus 로고
    • Genome structural variation discovery and genotyping
    • Alkan, C., Coe, B., and Eichler, E. 2011. Genome structural variation discovery and genotyping. Nature Reviews Genetics 12, 363-376.
    • (2011) Nature Reviews Genetics , vol.12 , pp. 363-376
    • Alkan, C.1    Coe, B.2    Eichler, E.3
  • 2
    • 70349556543 scopus 로고    scopus 로고
    • Personalized copy number and segmental duplication maps using next-generation sequencing
    • Alkan, C., Kidd, J., Marques-Bonet, T., et al. 2009. Personalized copy number and segmental duplication maps using next-generation sequencing. Nature Genetics 41, 1061-1067.
    • (2009) Nature Genetics , vol.41 , pp. 1061-1067
    • Alkan, C.1    Kidd, J.2    Marques-Bonet, T.3
  • 3
    • 84975742565 scopus 로고    scopus 로고
    • A map of human genome variation from population scale sequencing
    • Altshuler, D., Lander, E., Ambrogio, L., et al. 2010. A map of human genome variation from population scale sequencing. Nature 467, 1061-1073.
    • (2010) Nature , vol.467 , pp. 1061-1073
    • Altshuler, D.1    Lander, E.2    Ambrogio, L.3
  • 4
    • 84856435916 scopus 로고    scopus 로고
    • Structural variation: The genome's hidden architecture
    • Baker M. 2012. Structural variation: the genome's hidden architecture. Nature Methods 9, 133-137.
    • (2012) Nature Methods , vol.9 , pp. 133-137
    • Baker, M.1
  • 5
    • 4544263565 scopus 로고    scopus 로고
    • Fragment assembly with short reads
    • DOI 10.1093/bioinformatics/bth205
    • Chaisson, M., Pevzner, P., and Tang, H. 2004. Fragment assembly with short reads. Bioinformatics 20, 2067-2074. (Pubitemid 39236559)
    • (2004) Bioinformatics , vol.20 , Issue.13 , pp. 2067-2074
    • Chaisson, M.1    Pevzner, P.2    Tang, H.3
  • 6
    • 69549116107 scopus 로고    scopus 로고
    • Breakdancer: An algorithm for high-resolution mapping of genomic structural variation
    • Chen, K., Wallis, J., McLellan, M., et al. 2009. Breakdancer: an algorithm for high-resolution mapping of genomic structural variation. Nature Methods 6, 677-681.
    • (2009) Nature Methods , vol.6 , pp. 677-681
    • Chen, K.1    Wallis, J.2    McLellan, M.3
  • 7
    • 31144469134 scopus 로고    scopus 로고
    • Structural variation in the human genome
    • DOI 10.1038/nrg1767, PII NRG1767
    • Feuk, L., Carson, A., and Scherer, S. 2006. Structural variation in the human genome. Nature Reviews Genetics 7, 85-97. (Pubitemid 43128895)
    • (2006) Nature Reviews Genetics , vol.7 , Issue.2 , pp. 85-97
    • Feuk, L.1    Carson, A.R.2    Scherer, S.W.3
  • 9
    • 77955163329 scopus 로고    scopus 로고
    • MrsFAST: A cache-oblivious algorithm for short-read mapping
    • Hach, F., Hormozdiari, F., Alkan, C., et al. 2010. mrsFAST: a cache-oblivious algorithm for short-read mapping. Nature Methods 7, 576-577.
    • (2010) Nature Methods , vol.7 , pp. 576-577
    • Hach, F.1    Hormozdiari, F.2    Alkan, C.3
  • 10
    • 67650064593 scopus 로고    scopus 로고
    • Combinatorial algorithms for structural variation detection in high-throughput sequenced genomes
    • Hormozdiari, F., Alkan, C., Eichler, E., and Sahinalp, S. 2009. Combinatorial algorithms for structural variation detection in high-throughput sequenced genomes. Genome Research 19, 1270-1278.
    • (2009) Genome Research , vol.19 , pp. 1270-1278
    • Hormozdiari, F.1    Alkan, C.2    Eichler, E.3    Sahinalp, S.4
  • 11
    • 77954205450 scopus 로고    scopus 로고
    • Next-generation variationhunter: Combinatorial algorithms for transposon insertion discovery
    • Hormozdiari, F., Hajirasouliha, I., Dao, P., et al. 2010. Next-generation variationhunter: combinatorial algorithms for transposon insertion discovery. Bioinformatics 26, i350-i357.
    • (2010) Bioinformatics , vol.26
    • Hormozdiari, F.1    Hajirasouliha, I.2    Dao, P.3
  • 12
    • 84861729132 scopus 로고    scopus 로고
    • PIRS: Profile-based Illumina pair-end reads simulator
    • Hu, X., Yuan, J., Shi, Y., et al. 2012. pIRS: profile-based Illumina pair-end reads simulator. Bioinformatics 28, 1533-1535.
    • (2012) Bioinformatics , vol.28 , pp. 1533-1535
    • Hu, X.1    Yuan, J.2    Shi, Y.3
  • 13
    • 67349158018 scopus 로고    scopus 로고
    • Analysis and implications of mutational variation
    • Keightley, P., and Halligan, D. 2009. Analysis and implications of mutational variation. Genetica 136, 359-369.
    • (2009) Genetica , vol.136 , pp. 359-369
    • Keightley, P.1    Halligan, D.2
  • 14
    • 62549131646 scopus 로고    scopus 로고
    • PEMer: A computational framework with simulation-based error models for inferring genomic structural variants from massive paired-end sequencing dat
    • Korbel, J.O., Abyzov, A., Mu, X.J., et al. 2009. PEMer: a computational framework with simulation-based error models for inferring genomic structural variants from massive paired-end sequencing data. Genome Biol. 10, R23.
    • (2009) Genome Biol. , vol.10
    • Korbel, J.O.1    Abyzov, A.2    Mu, X.J.3
  • 15
    • 84859210032 scopus 로고    scopus 로고
    • Fast gapped-read alignment with Bowtie 2
    • Langmead, B., and Salzberg, S. 2012. Fast gapped-read alignment with Bowtie 2. Nature Methods 9, 357-359.
    • (2012) Nature Methods , vol.9 , pp. 357-359
    • Langmead, B.1    Salzberg, S.2
  • 16
    • 62349130698 scopus 로고    scopus 로고
    • Ultrafast and memory-efficient alignment of short DNA sequences to the human genome
    • Langmead, B., Trapnell, C., Pop, M., et al. 2009. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol. 10, R25.
    • (2009) Genome Biol. , vol.10
    • Langmead, B.1    Trapnell, C.2    Pop, M.3
  • 17
    • 84867339877 scopus 로고    scopus 로고
    • Rate and molecular spectrum of spontaneous mutations in the bacterium Escherichia coli as determined by whole-genome sequencing
    • Lee, H., Popodi, E., Tang, H., and Foster, P.L. 2012a. Rate and molecular spectrum of spontaneous mutations in the bacterium Escherichia coli as determined by whole-genome sequencing. Proceedings of the National Academy of Sciences 109, E2774-E2783.
    • (2012) Proceedings of the National Academy of Sciences , vol.109
    • Lee, H.1    Popodi, E.2    Tang, H.3    Foster, P.L.4
  • 18
    • 84894435382 scopus 로고    scopus 로고
    • Detecting structural variants involving repetitive elements: Capturing transposition events in the genome of Escherichia coli
    • Lee, H., Popodi, E., Foster, P.L., and Tang, H. 2012b. Detecting structural variants involving repetitive elements: capturing transposition events in the genome of Escherichia coli. BMC Bioinformatics 13 suppl 18, A12.
    • (2012) BMC Bioinformatics , vol.13 , Issue.SUPPL. 18
    • Lee, H.1    Popodi, E.2    Foster, P.L.3    Tang, H.4
  • 19
    • 67649580757 scopus 로고    scopus 로고
    • MoDIL: Detecting small indels from clone-end sequencing with mixtures of distributions
    • Lee, S., Hormozdiari, F., Alkan, C., and Brudno, M. 2009. MoDIL: detecting small indels from clone-end sequencing with mixtures of distributions. Nature Methods 6, 473-474.
    • (2009) Nature Methods , vol.6 , pp. 473-474
    • Lee, S.1    Hormozdiari, F.2    Alkan, C.3    Brudno, M.4
  • 20
    • 67649884743 scopus 로고    scopus 로고
    • Fast and accurate short read alignment with Burrows-Wheeler transform
    • Li, H., and Durbin, R. 2009. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25, 1754-1760.
    • (2009) Bioinformatics , vol.25 , pp. 1754-1760
    • Li, H.1    Durbin, R.2
  • 21
    • 0021944238 scopus 로고
    • Mismatch repair mutations of Escherichia coli K12 enhance transposon excision
    • Lundblad, V., and Kleckner, N. 1985. Mismatch repair mutations of Escherichia coli K12 enhance transposon excision. Genetics 109, 3-19. (Pubitemid 15166587)
    • (1985) Genetics , vol.109 , Issue.1 , pp. 3-19
    • Lundblad, V.1    Kleckner, N.2
  • 25
    • 70449704529 scopus 로고    scopus 로고
    • Computational methods for discovering structural variation with next-generation sequencing
    • Medvedev, P., Stanciu, M., and Brudno, M. 2009. Computational methods for discovering structural variation with next-generation sequencing. Nature Methods 6, S13-S20.
    • (2009) Nature Methods , vol.6
    • Medvedev, P.1    Stanciu, M.2    Brudno, M.3
  • 26
    • 77956838065 scopus 로고    scopus 로고
    • Advances in understanding cancer genomes through second-generation sequencing
    • Meyerson, M., Gabriel, S., and Getz, G. 2010. Advances in understanding cancer genomes through second-generation sequencing. Nature Reviews Genetics 11, 685-696.
    • (2010) Nature Reviews Genetics , vol.11 , pp. 685-696
    • Meyerson, M.1    Gabriel, S.2    Getz, G.3
  • 27
    • 43449126511 scopus 로고    scopus 로고
    • Space efficient computation of rare maximal exact matches between multiple sequences
    • DOI 10.1089/cmb.2007.0105
    • Ohlebusch, E., and Kurtz, S. 2008. Space efficient computation of rare maximal exact matches between multiple sequences. J. Comp. Biol. 15, 357-377. (Pubitemid 351667844)
    • (2008) Journal of Computational Biology , vol.15 , Issue.4 , pp. 357-377
    • Ohlebusch, E.1    Kurtz, S.2
  • 28
    • 4644275238 scopus 로고    scopus 로고
    • De novo repeat classification and fragment assembly
    • DOI 10.1101/gr.2395204
    • Pevzner, P., Tang, H., and Tesler, G. 2004. De novo repeat classification and fragment assembly. Gen. Res. 14, 1786-1796. (Pubitemid 39276437)
    • (2004) Genome Research , vol.14 , Issue.9 , pp. 1786-1796
    • Pevzner, P.A.1    Tang, H.2    Tesler, G.3
  • 29
    • 77951860138 scopus 로고    scopus 로고
    • Genome-wide mapping and assembly of structural variant breakpoints in the mouse genome
    • Quinlan, A.R., Clark, R.A., Sokolova, S., et al. 2010. Genome-wide mapping and assembly of structural variant breakpoints in the mouse genome. Gen. Res. 20, 623-635.
    • (2010) Gen. Res. , vol.20 , pp. 623-635
    • Quinlan, A.R.1    Clark, R.A.2    Sokolova, S.3
  • 30
    • 14644402268 scopus 로고    scopus 로고
    • Reconstructing tumor genome architectures
    • DOI 10.1093/bioinformatics/btg1074
    • Raphael, B., Volik, S., Collins, C., and Pevzner, P. 2003. Reconstructing tumor genome architectures. Bioinformatics 19, ii162-ii171. (Pubitemid 41296653)
    • (2003) Bioinformatics , vol.19 , Issue.SUPPL. 2
    • Raphael, B.J.1    Volik, S.2    Collins, C.3    Pevzner, P.A.4
  • 31
    • 66349083341 scopus 로고    scopus 로고
    • A geometric approach for classification and comparison of structural variants
    • Sindi, S., Helman, E., Bashir, A., and Raphael, B. 2009. A geometric approach for classification and comparison of structural variants. Bioinformatics 25, i222-i230.
    • (2009) Bioinformatics , vol.25
    • Sindi, S.1    Helman, E.2    Bashir, A.3    Raphael, B.4
  • 32
    • 77949831756 scopus 로고    scopus 로고
    • Structural variation in the human genome and its role in disease
    • Stankiewicz, P., and Lupski, J. 2010. Structural variation in the human genome and its role in disease. Annual Review of Medicine 61, 437-455.
    • (2010) Annual Review of Medicine , vol.61 , pp. 437-455
    • Stankiewicz, P.1    Lupski, J.2
  • 34
    • 84862519955 scopus 로고    scopus 로고
    • A de Bruijn graph approach to the quantification of closely related genomes in a microbial community
    • Wang, M., Ye, Y., and Tang, H. 2012. A de Bruijn graph approach to the quantification of closely related genomes in a microbial community. J. Comp. Biol. 19, 814-825.
    • (2012) J. Comp. Biol. , vol.19 , pp. 814-825
    • Wang, M.1    Ye, Y.2    Tang, H.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.