-
1
-
-
84880634824
-
Near-infrared light-mediated nanoplatforms for cancer thermo-chemotherapy and optical imaging
-
Zhang Z., Wang J., Chen C. Near-infrared light-mediated nanoplatforms for cancer thermo-chemotherapy and optical imaging. Adv Mater 2013, 25:3869-3880.
-
(2013)
Adv Mater
, vol.25
, pp. 3869-3880
-
-
Zhang, Z.1
Wang, J.2
Chen, C.3
-
2
-
-
65949096862
-
Computationally guided photothermal tumor therapy using long-circulating gold nanorod antennas
-
Maltzahn G.V., Park J.H., Agrawal A., Bandaru N.K., Das S.K., Sailor M.J., et al. Computationally guided photothermal tumor therapy using long-circulating gold nanorod antennas. Cancer Res 2009, 69:3892-3900.
-
(2009)
Cancer Res
, vol.69
, pp. 3892-3900
-
-
Maltzahn, G.V.1
Park, J.H.2
Agrawal, A.3
Bandaru, N.K.4
Das, S.K.5
Sailor, M.J.6
-
3
-
-
84855374398
-
Advances in cancer therapy through the use of carbon nanotube-mediated targeted hyperthermia
-
Iancu C., Mocan L. Advances in cancer therapy through the use of carbon nanotube-mediated targeted hyperthermia. Int J Nanomed 2011, 6:1675-1684.
-
(2011)
Int J Nanomed
, vol.6
, pp. 1675-1684
-
-
Iancu, C.1
Mocan, L.2
-
4
-
-
79952906236
-
Tumor regression invivo by photothermal therapy based on gold-nanorod-loaded, functional nanocarriers
-
Choi W.I., Kim J.Y., Kang C., Byeon C.C., Kim Y.H., Tae G. Tumor regression invivo by photothermal therapy based on gold-nanorod-loaded, functional nanocarriers. ACS Nano 2011, 5:1995-2003.
-
(2011)
ACS Nano
, vol.5
, pp. 1995-2003
-
-
Choi, W.I.1
Kim, J.Y.2
Kang, C.3
Byeon, C.C.4
Kim, Y.H.5
Tae, G.6
-
5
-
-
30944450665
-
Deep tissue two-photon microscopy
-
Helmchen F., Denk W. Deep tissue two-photon microscopy. Nat Methods 2005, 2:932-940.
-
(2005)
Nat Methods
, vol.2
, pp. 932-940
-
-
Helmchen, F.1
Denk, W.2
-
6
-
-
70449574483
-
Aroute to brightly fluorescent carbon nanotubes for near-infrared imaging in mice
-
Welsher K., Liu Z., Sherlock S.P., Robinson J.T., Chen Z., Daranciang D., et al. Aroute to brightly fluorescent carbon nanotubes for near-infrared imaging in mice. Nat Nanotechnol 2009, 4:773-780.
-
(2009)
Nat Nanotechnol
, vol.4
, pp. 773-780
-
-
Welsher, K.1
Liu, Z.2
Sherlock, S.P.3
Robinson, J.T.4
Chen, Z.5
Daranciang, D.6
-
7
-
-
84875684489
-
Comparison study of gold nanohexapods, nanorods, and nanocages for photothermal cancer treatment
-
Wang Y., Black K.C., Luehmann H., Li W., Zhang Y., Cai X., et al. Comparison study of gold nanohexapods, nanorods, and nanocages for photothermal cancer treatment. ACS Nano 2013, 7:2068-2077.
-
(2013)
ACS Nano
, vol.7
, pp. 2068-2077
-
-
Wang, Y.1
Black, K.C.2
Luehmann, H.3
Li, W.4
Zhang, Y.5
Cai, X.6
-
8
-
-
73249145012
-
Invivo near-infrared mediated tumor destruction by photothermal effect of carbon nanotubes
-
Moon H.K., Lee S.H., Choi H.C. Invivo near-infrared mediated tumor destruction by photothermal effect of carbon nanotubes. ACS Nano 2009, 3:3707-3713.
-
(2009)
ACS Nano
, vol.3
, pp. 3707-3713
-
-
Moon, H.K.1
Lee, S.H.2
Choi, H.C.3
-
9
-
-
77956455985
-
Graphene in mice: ultrahigh invivo tumor uptake and efficient photothermal therapy
-
Yang K., Zhang S., Zhang G., Sun X., Lee S.T., Liu Z. Graphene in mice: ultrahigh invivo tumor uptake and efficient photothermal therapy. Nano Lett 2010, 10:3318-3323.
-
(2010)
Nano Lett
, vol.10
, pp. 3318-3323
-
-
Yang, K.1
Zhang, S.2
Zhang, G.3
Sun, X.4
Lee, S.T.5
Liu, Z.6
-
10
-
-
84874422553
-
Graphene-based photothermal agent for rapid and effective killing of bacteria
-
Wu M.C., Deokar A.R., Liao J.H., Shih P.Y., Ling Y.C. Graphene-based photothermal agent for rapid and effective killing of bacteria. ACS Nano 2013, 7:1281-1290.
-
(2013)
ACS Nano
, vol.7
, pp. 1281-1290
-
-
Wu, M.C.1
Deokar, A.R.2
Liao, J.H.3
Shih, P.Y.4
Ling, Y.C.5
-
11
-
-
33244457595
-
Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods
-
Huang X., El-Sayed I.H., Qian W., El-Sayed M.A. Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods. JAm Chem Soc 2006, 128:2115-2120.
-
(2006)
JAm Chem Soc
, vol.128
, pp. 2115-2120
-
-
Huang, X.1
El-Sayed, I.H.2
Qian, W.3
El-Sayed, M.A.4
-
12
-
-
78649443626
-
Invitro comparison of the photothermal anticancer activity of graphene nanoparticles and carbon nanotubes
-
Markovic Z.M., Harhaji-Trajkovic L.M., Todorovic-Markovic B.M., Kepic D.P., Arsikin K.M., Jovanovic S.P., et al. Invitro comparison of the photothermal anticancer activity of graphene nanoparticles and carbon nanotubes. Biomaterials 2011, 32:1121-1129.
-
(2011)
Biomaterials
, vol.32
, pp. 1121-1129
-
-
Markovic, Z.M.1
Harhaji-Trajkovic, L.M.2
Todorovic-Markovic, B.M.3
Kepic, D.P.4
Arsikin, K.M.5
Jovanovic, S.P.6
-
13
-
-
79955882310
-
High-concentration aqueous dispersions of graphene using nonionic, biocompatible block copolymers
-
Seo J.W., Green A.A., Antaris A.L., Hersam M.C. High-concentration aqueous dispersions of graphene using nonionic, biocompatible block copolymers. JPhys Chem Lett 2011, 2:1004-1008.
-
(2011)
JPhys Chem Lett
, vol.2
, pp. 1004-1008
-
-
Seo, J.W.1
Green, A.A.2
Antaris, A.L.3
Hersam, M.C.4
-
14
-
-
77955545667
-
High-concentration, surfactant-stabilized graphene dispersions
-
Lotya M., King P.J., Khan U., De S., Coleman J.N. High-concentration, surfactant-stabilized graphene dispersions. ACS Nano 2010, 4:3155-3162.
-
(2010)
ACS Nano
, vol.4
, pp. 3155-3162
-
-
Lotya, M.1
King, P.J.2
Khan, U.3
De, S.4
Coleman, J.N.5
-
15
-
-
70349105583
-
Preparation of carbon nanotube bioconjugates for biomedical applications
-
Liu Z., Tabakman S.M., Chen Z., Dai H. Preparation of carbon nanotube bioconjugates for biomedical applications. Nat Protoc 2009, 4:1372-1382.
-
(2009)
Nat Protoc
, vol.4
, pp. 1372-1382
-
-
Liu, Z.1
Tabakman, S.M.2
Chen, Z.3
Dai, H.4
-
16
-
-
59849110117
-
Pluronic-coated carbon nanotubes do not induce degeneration of cortical neurons invivo and invitro
-
Bardi G., Tognini P., Ciofani G., Raffa V., Costa M., Pizzorusso T. Pluronic-coated carbon nanotubes do not induce degeneration of cortical neurons invivo and invitro. Nanomed-Nanotechnol 2009, 5:96-104.
-
(2009)
Nanomed-Nanotechnol
, vol.5
, pp. 96-104
-
-
Bardi, G.1
Tognini, P.2
Ciofani, G.3
Raffa, V.4
Costa, M.5
Pizzorusso, T.6
-
17
-
-
84856181540
-
Successful stabilization of graphene oxide in electrolyte solutions: enhancement of biofunctionalization and cellular uptake
-
Hong B.J., Compton O.C., An Z., Eryazici I., Nguyen S.T. Successful stabilization of graphene oxide in electrolyte solutions: enhancement of biofunctionalization and cellular uptake. ACS Nano 2012, 6:63-73.
-
(2012)
ACS Nano
, vol.6
, pp. 63-73
-
-
Hong, B.J.1
Compton, O.C.2
An, Z.3
Eryazici, I.4
Nguyen, S.T.5
-
18
-
-
33845351355
-
Areview of poloxamer 407 pharmaceutical and pharmacological characteristics
-
Dumortier G., Grossiord J.L., Agnely F., Chaumeil J.C. Areview of poloxamer 407 pharmaceutical and pharmacological characteristics. Pharm Res 2006, 23:2709-2728.
-
(2006)
Pharm Res
, vol.23
, pp. 2709-2728
-
-
Dumortier, G.1
Grossiord, J.L.2
Agnely, F.3
Chaumeil, J.C.4
-
19
-
-
1642540193
-
Translocation of bioactive peptides across cell membranes by carbon nanotubes
-
Pantarotto D., Briand J.P., Prato M., Bianco A. Translocation of bioactive peptides across cell membranes by carbon nanotubes. Chem Commun 2004, 1:16-17.
-
(2004)
Chem Commun
, vol.1
, pp. 16-17
-
-
Pantarotto, D.1
Briand, J.P.2
Prato, M.3
Bianco, A.4
-
20
-
-
34447538215
-
Soluble single-walled carbon nanotubes as longboat delivery systems for platinum(IV) anticancer drug design
-
Feazell R.P., Nakayama-Ratchford N., Dai H., Lippard S.J. Soluble single-walled carbon nanotubes as longboat delivery systems for platinum(IV) anticancer drug design. JAm Chem Soc 2007, 129:8438-8439.
-
(2007)
JAm Chem Soc
, vol.129
, pp. 8438-8439
-
-
Feazell, R.P.1
Nakayama-Ratchford, N.2
Dai, H.3
Lippard, S.J.4
-
21
-
-
83555177197
-
Single walled carbon nanotubes as drug delivery vehicles: targeting doxorubicin to tumors
-
Meng L., Zhang X., Lu Q., Fei Z., Dyson P.J. Single walled carbon nanotubes as drug delivery vehicles: targeting doxorubicin to tumors. Biomaterials 2012, 33:1689-1698.
-
(2012)
Biomaterials
, vol.33
, pp. 1689-1698
-
-
Meng, L.1
Zhang, X.2
Lu, Q.3
Fei, Z.4
Dyson, P.J.5
-
22
-
-
84864668424
-
Mechanism of cellular uptake of graphene oxide studied by surface-enhanced Raman spectroscopy
-
Huang J., Zong C., Shen H., Liu M., Chen B., Ren B., et al. Mechanism of cellular uptake of graphene oxide studied by surface-enhanced Raman spectroscopy. Small 2012, 8:2577-2584.
-
(2012)
Small
, vol.8
, pp. 2577-2584
-
-
Huang, J.1
Zong, C.2
Shen, H.3
Liu, M.4
Chen, B.5
Ren, B.6
-
23
-
-
84867940274
-
Cell uptake survey of pegylated nanographene oxide
-
Vila M., Portoles M.T., Marques P.A., Feito M.J., Matesanz M.C., Ramirez-Santillan C., et al. Cell uptake survey of pegylated nanographene oxide. Nanotechnology 2012, 23:465103.
-
(2012)
Nanotechnology
, vol.23
, pp. 465103
-
-
Vila, M.1
Portoles, M.T.2
Marques, P.A.3
Feito, M.J.4
Matesanz, M.C.5
Ramirez-Santillan, C.6
-
24
-
-
84868102530
-
Cell specific cytotoxicity and uptake of graphene nanoribbons
-
Mullick Chowdhury S., Lalwani G., Zhang K., Yang J.Y., Neville K., Sitharaman B. Cell specific cytotoxicity and uptake of graphene nanoribbons. Biomaterials 2013, 34:283-293.
-
(2013)
Biomaterials
, vol.34
, pp. 283-293
-
-
Mullick Chowdhury, S.1
Lalwani, G.2
Zhang, K.3
Yang, J.Y.4
Neville, K.5
Sitharaman, B.6
-
25
-
-
56149113622
-
Graphene-based ultracapacitors
-
Stoller M.D., Park S., Zhu Y., An J., Ruoff R.S. Graphene-based ultracapacitors. Nano Lett 2008, 8:3498-3502.
-
(2008)
Nano Lett
, vol.8
, pp. 3498-3502
-
-
Stoller, M.D.1
Park, S.2
Zhu, Y.3
An, J.4
Ruoff, R.S.5
-
26
-
-
40349112868
-
Circulation and long-term fate of functionalized, biocompatible single-walled carbon nanotubes in mice probed by Raman spectroscopy
-
Liu Z., Davis C., Cai W., He L., Chen X., Dai H. Circulation and long-term fate of functionalized, biocompatible single-walled carbon nanotubes in mice probed by Raman spectroscopy. Proc Natl Acad Sci U S A 2008, 105:1410-1415.
-
(2008)
Proc Natl Acad Sci U S A
, vol.105
, pp. 1410-1415
-
-
Liu, Z.1
Davis, C.2
Cai, W.3
He, L.4
Chen, X.5
Dai, H.6
-
27
-
-
57749207052
-
Intravascular delivery of particulate systems: does geometry really matter?
-
Decuzzi P., Pasqualini R., Arap W., Ferrari M. Intravascular delivery of particulate systems: does geometry really matter?. Pharm Res 2009, 26:235-243.
-
(2009)
Pharm Res
, vol.26
, pp. 235-243
-
-
Decuzzi, P.1
Pasqualini, R.2
Arap, W.3
Ferrari, M.4
-
28
-
-
34248402413
-
Shape effects of filaments versus spherical particles in flow and drug delivery
-
Geng Y., Dalhaimer P., Cai S., Tsai R., Tewari M., Minko T., et al. Shape effects of filaments versus spherical particles in flow and drug delivery. Nat Nanotechnol 2007, 2:249-255.
-
(2007)
Nat Nanotechnol
, vol.2
, pp. 249-255
-
-
Geng, Y.1
Dalhaimer, P.2
Cai, S.3
Tsai, R.4
Tewari, M.5
Minko, T.6
-
29
-
-
0022858683
-
Anew concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs
-
Matsumura Y., Maeda H. Anew concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs. Cancer Res 1986, 46:6387-6392.
-
(1986)
Cancer Res
, vol.46
, pp. 6387-6392
-
-
Matsumura, Y.1
Maeda, H.2
-
30
-
-
84880955573
-
Indocyanine green loaded SPIO nanoparticles with phospholipid-PEG coating for dual-modal imaging and photothermal therapy
-
Ma Y., Tong S., Bao G., Gao C., Dai Z. Indocyanine green loaded SPIO nanoparticles with phospholipid-PEG coating for dual-modal imaging and photothermal therapy. Biomaterials 2013, 34:7706-7714.
-
(2013)
Biomaterials
, vol.34
, pp. 7706-7714
-
-
Ma, Y.1
Tong, S.2
Bao, G.3
Gao, C.4
Dai, Z.5
-
31
-
-
84863231008
-
Enhanced tumor treatment using biofunctional indocyanine green-containing nanostructure by intratumoral or intravenous injection
-
Zheng X., Zhou F., Wu B., Chen W.R., Xing D. Enhanced tumor treatment using biofunctional indocyanine green-containing nanostructure by intratumoral or intravenous injection. Mol Pharmacol 2012, 9:514-522.
-
(2012)
Mol Pharmacol
, vol.9
, pp. 514-522
-
-
Zheng, X.1
Zhou, F.2
Wu, B.3
Chen, W.R.4
Xing, D.5
|