메뉴 건너뛰기




Volumn 10, Issue 88, 2013, Pages

Designing experiments to understand the variability in biochemical reaction networks

Author keywords

Cell to cell variability; Continuous time Markov chains; Fisher information; Gene expression; Optimal experimental design

Indexed keywords

CELLS; CONTINUOUS TIME SYSTEMS; CYTOLOGY; FISHER INFORMATION MATRIX; GENE EXPRESSION; GENES; KINETIC PARAMETERS; MARKOV PROCESSES; PARAMETER ESTIMATION; STATISTICS; STOCHASTIC MODELS; STOCHASTIC SYSTEMS;

EID: 84896591356     PISSN: 17425689     EISSN: 17425662     Source Type: Journal    
DOI: 10.1098/rsif.2013.0588     Document Type: Article
Times cited : (62)

References (44)
  • 1
    • 73149105740 scopus 로고    scopus 로고
    • Listening to the noise: Random fluctuations reveal gene network parameters
    • (doi:10.1038/msb.2009.75)
    • Munsky B, Trinh B, Khammash M. 2009 Listening to the noise: random fluctuations reveal gene network parameters. Mol. Syst. Biol. 5, 318. (doi:10.1038/msb.2009.75)
    • (2009) Mol. Syst. Biol. , vol.5 , pp. 318
    • Munsky, B.1    Trinh, B.2    Khammash, M.3
  • 2
    • 84873801555 scopus 로고    scopus 로고
    • System identification of signal-activated stochastic gene regulation
    • (doi:10.1126/science.1231456)
    • Neuert G, Munsky B, Tan R.Z., Teytelman L., Khammash M, van Oudenaarden A. 2013 System identification of signal-activated stochastic gene regulation. Science 339, 584-587. (doi:10.1126/science.1231456)
    • (2013) Science , vol.339 , pp. 584-587
    • Neuert, G.1    Munsky, B.2    Tan, R.Z.3    Teytelman, L.4    Khammash, M.5    Van Oudenaarden, A.6
  • 3
    • 84861443923 scopus 로고    scopus 로고
    • Moment-based inference predicts bimodality in transient gene expression
    • (doi:10.1073/pnas.1200161109)
    • Zechner C, Ruess J, Krenn P., Pelet S, Peter M, Lygeros J., Koeppl H. 2012 Moment-based inference predicts bimodality in transient gene expression. Proc. Natl Acad. Sci. USA 109, 8340-8345. (doi:10.1073/pnas.1200161109)
    • (2012) Proc. Natl Acad. Sci. USA , vol.109 , pp. 8340-8345
    • Zechner, C.1    Ruess, J.2    Krenn, P.3    Pelet, S.4    Peter, M.5    Lygeros, J.6    Koeppl, H.7
  • 4
    • 84866083176 scopus 로고    scopus 로고
    • Dynamics of protein noise can distinguish between alternate sources of gene-expression variability
    • (doi:10.1038/msb.2012.38)
    • Singh A, Razooky B, Dar R., Weinberger L. 2012 Dynamics of protein noise can distinguish between alternate sources of gene-expression variability. Mol. Syst. Biol. 8, 607. (doi:10.1038/msb.2012.38)
    • (2012) Mol. Syst. Biol. , vol.8 , pp. 607
    • Singh, A.1    Razooky, B.2    Dar, R.3    Weinberger, L.4
  • 5
    • 79957743805 scopus 로고    scopus 로고
    • Sensitivity, robustness, and identifiability in stochastic chemical kinetics models
    • (doi:10.1073/pnas.1015814108)
    • Komorowski M, Costa M, Rand D., Stumpf M. 2011 Sensitivity, robustness, and identifiability in stochastic chemical kinetics models. Proc. Natl Acad. Sci. USA 108, 8645-8650. (doi:10.1073/pnas.1015814108)
    • (2011) Proc. Natl Acad. Sci. USA , vol.108 , pp. 8645-8650
    • Komorowski, M.1    Costa, M.2    Rand, D.3    Stumpf, M.4
  • 6
    • 44049109914 scopus 로고
    • A rigorous derivation of the chemical master equation
    • (doi:10.1016/0378-4371(92)90283-V)
    • Gillespie D. 1992 A rigorous derivation of the chemical master equation. Physica A 188, 404-425. (doi:10.1016/0378-4371(92)90283-V)
    • (1992) Physica A , vol.188 , pp. 404-425
    • Gillespie, D.1
  • 7
    • 33751347484 scopus 로고    scopus 로고
    • The finite state projection algorithm for the solution of the chemical master equation
    • (doi:10.1063/1.2145882)
    • Munsky B, Khammash M. 2006 The finite state projection algorithm for the solution of the chemical master equation. J. Chem. Phys. 124, 044104. (doi:10.1063/1.2145882)
    • (2006) J. Chem. Phys. , vol.124 , pp. 044104
    • Munsky, B.1    Khammash, M.2
  • 9
    • 0034225547 scopus 로고    scopus 로고
    • The chemical langevin equation
    • (doi:10.1063/1.481811)
    • Gillespie D. 2000 The chemical Langevin equation. J. Chem. Phys. 113, 297-306. (doi:10.1063/1.481811)
    • (2000) J. Chem. Phys. , vol.113 , pp. 297-306
    • Gillespie, D.1
  • 10
    • 78951470515 scopus 로고    scopus 로고
    • Origins of regulated cell-to-cell variability
    • (doi:10.1038/nrm3044)
    • Snijder B, Pelkmans L. 2011 Origins of regulated cell-to-cell variability. Nat. Rev. Mol. Cell Biol. 12, 119-125. (doi:10.1038/nrm3044)
    • (2011) Nat. Rev. Mol. Cell Biol. , vol.12 , pp. 119-125
    • Snijder, B.1    Pelkmans, L.2
  • 11
    • 43249118966 scopus 로고    scopus 로고
    • Colored extrinsic fluctuations and stochastic gene expression
    • (doi:10.1038/msb.2008.31)
    • Shahrezaei V, Ollivier J, Swain P. 2008 Colored extrinsic fluctuations and stochastic gene expression. Mol. Syst. Biol. 4, 196. (doi:10.1038/msb.2008. 31)
    • (2008) Mol. Syst. Biol. , vol.4 , pp. 196
    • Shahrezaei, V.1    Ollivier, J.2    Swain, P.3
  • 12
    • 79961051673 scopus 로고    scopus 로고
    • Separating intrinsic from extrinsic fluctuations in dynamic biological systems
    • (doi:10.1073/pnas.1018832108)
    • Hilfinger A, Paulsson J. 2011 Separating intrinsic from extrinsic fluctuations in dynamic biological systems. Proc. Natl Acad. Sci. USA 108, 12167-12172. (doi:10.1073/pnas.1018832108)
    • (2011) Proc. Natl Acad. Sci. USA , vol.108 , pp. 12167-12172
    • Hilfinger, A.1    Paulsson, J.2
  • 13
    • 84861650075 scopus 로고    scopus 로고
    • Accounting for extrinsic variability in the estimation of stochastic rate constants
    • (doi:10.1002/rnc.2804)
    • Koeppl H, Zechner C, Ganguly A., Pelet S, Peter M. 2011 Accounting for extrinsic variability in the estimation of stochastic rate constants. Int. J. Robust Nonlin. 22, 1103-1119. (doi:10.1002/rnc.2804)
    • (2011) Int. J. Robust Nonlin. , vol.22 , pp. 1103-1119
    • Koeppl, H.1    Zechner, C.2    Ganguly, A.3    Pelet, S.4    Peter, M.5
  • 14
    • 84870881763 scopus 로고    scopus 로고
    • Using temporal correlations and full distributions to separate intrinsic and extrinsic fluctuations in biological systems
    • (doi:10.1103/PhysRevLett.109.248104)
    • Hilfinger A, Chen M, Paulsson J. 2012 Using temporal correlations and full distributions to separate intrinsic and extrinsic fluctuations in biological systems. Phys. Rev. Lett. 109, 248104. (doi:10.1103/PhysRevLett.109. 248104)
    • (2012) Phys. Rev. Lett. , vol.109 , pp. 248104
    • Hilfinger, A.1    Chen, M.2    Paulsson, J.3
  • 15
    • 0037119587 scopus 로고    scopus 로고
    • Stochastic gene expression in a single cell
    • (doi:10.1126/science.1070919)
    • Elowitz M, Levine A, Siggia E., Swain P. 2002 Stochastic gene expression in a single cell. Science 297, 1183-1186. (doi:10.1126/science.1070919)
    • (2002) Science , vol.297 , pp. 1183-1186
    • Elowitz, M.1    Levine, A.2    Siggia, E.3    Swain, P.4
  • 17
    • 32844454497 scopus 로고    scopus 로고
    • Origins of extrinsic variability in eukaryotic gene expression
    • (doi:10.1038/nature04281)
    • Volfson D, Marciniak J, Blake W., Ostroff N, Tsimring L, Hasty J. 2005 Origins of extrinsic variability in eukaryotic gene expression. Nature 439, 861-864. (doi:10.1038/nature04281)
    • (2005) Nature , vol.439 , pp. 861-864
    • Volfson, D.1    Marciniak, J.2    Blake, W.3    Ostroff, N.4    Tsimring, L.5    Hasty, J.6
  • 18
    • 37549016445 scopus 로고    scopus 로고
    • Stochastic gene expression out-of-steady-state in the cyanobacterial circadian clock
    • (doi:10.1038/nature06395)
    • Chabot J, Pedraza J, Luitel P., Van Oudenaarden A. 2007 Stochastic gene expression out-of-steady-state in the cyanobacterial circadian clock. Nature 450, 1249-1252. (doi:10.1038/nature06395)
    • (2007) Nature , vol.450 , pp. 1249-1252
    • Chabot, J.1    Pedraza, J.2    Luitel, P.3    Van Oudenaarden, A.4
  • 19
    • 15544371346 scopus 로고    scopus 로고
    • Gene regulation at the single-cell level
    • (doi:10.1126/science.1106914)
    • Rosenfeld N, Young J, Alon U., Swain P, Elowitz M. 2005 Gene regulation at the single-cell level. Science 307, 1962-1965. (doi:10.1126/science.1106914)
    • (2005) Science , vol.307 , pp. 1962-1965
    • Rosenfeld, N.1    Young, J.2    Alon, U.3    Swain, P.4    Elowitz, M.5
  • 21
    • 33749854633 scopus 로고    scopus 로고
    • Modeling and analysis of stochastic hybrid systems
    • (doi:10.1049/ip-cta:20050088)
    • Hespanha J. 2006 Modeling and analysis of stochastic hybrid systems. IEE Proc. Control Theory Appl. 153, 520-535. (doi:10.1049/ip-cta:20050088)
    • (2006) IEE Proc. Control Theory Appl. , vol.153 , pp. 520-535
    • Hespanha, J.1
  • 22
    • 80555154070 scopus 로고    scopus 로고
    • Moment estimation for chemically reacting systems by extended Kalman filtering
    • (doi:10.1063/1.3654135)
    • Ruess J, Milias-Argeitis A, Summers S., Lygeros J. 2011 Moment estimation for chemically reacting systems by extended Kalman filtering. J. Chem. Phys. 135, 165102. (doi:10.1063/1.3654135)
    • (2011) J. Chem. Phys. , vol.135 , pp. 165102
    • Ruess, J.1    Milias-Argeitis, A.2    Summers, S.3    Lygeros, J.4
  • 23
    • 79951586485 scopus 로고    scopus 로고
    • Approximate moment dynamics for chemically reacting systems
    • (doi:10.1109/TAC.2010.2088631)
    • Singh A, Hespanha J. 2011 Approximate moment dynamics for chemically reacting systems. IEEE Trans. Automat. Contr. 56, 414-418. (doi:10.1109/TAC. 2010.2088631)
    • (2011) IEEE Trans. Automat. Contr. , vol.56 , pp. 414-418
    • Singh, A.1    Hespanha, J.2
  • 24
    • 84877766748 scopus 로고    scopus 로고
    • A general moment expansion method for stochastic kinetic models
    • (doi:10.1063/1.4802475)
    • Ale A, Kirk P, Stumpf M. 2013 A general moment expansion method for stochastic kinetic models. J. Chem. Phys. 138, 174101. (doi:10.1063/1.4802475)
    • (2013) J. Chem. Phys. , vol.138 , pp. 174101
    • Ale, A.1    Kirk, P.2    Stumpf, M.3
  • 25
    • 73449142148 scopus 로고    scopus 로고
    • Optimal experimental design for parameter estimation of a cell signaling model
    • (doi:10.1371/journal.pcbi.1000558)
    • Bandara S, Schlöder J, Eils R., Bock H, Meyer T. 2009 Optimal experimental design for parameter estimation of a cell signaling model. PLoS Comput. Biol. 5, e1000558. (doi:10.1371/journal.pcbi.1000558)
    • (2009) PLoS Comput. Biol. , vol.5
    • Bandara, S.1    Schlöder, J.2    Eils, R.3    Bock, H.4    Meyer, T.5
  • 26
    • 71149121686 scopus 로고    scopus 로고
    • Optimized expected information gain for nonlinear dynamical systems
    • Montreal, Canada, 14-18 June New York, NY: ACM
    • Busetto A, Ong C, Buhmann J. 2009 Optimized expected information gain for nonlinear dynamical systems. in Proc. 26th Annual Int. Conf. on Machine Learning, Montreal, Canada, 14-18 June, pp. 97-104. New York, NY: ACM.
    • (2009) Proc. 26th Annual Int. Conf. on Machine Learning , pp. 97-104
    • Busetto, A.1    Ong, C.2    Buhmann, J.3
  • 27
    • 52149085229 scopus 로고    scopus 로고
    • Model-based design of experiments for parameter precision: State of the art
    • (doi:10.1016/j.ces.2007.11.034)
    • Franceschini G, Macchietto S. 2008 Model-based design of experiments for parameter precision: state of the art. Chem. Eng. Sci. 63, 4846-4872. (doi:10.1016/j.ces.2007.11.034)
    • (2008) Chem. Eng. Sci. , vol.63 , pp. 4846-4872
    • Franceschini, G.1    Macchietto, S.2
  • 28
    • 84873505176 scopus 로고    scopus 로고
    • Maximizing the information content of experiments in systems biology
    • (doi:10.1371/journal.pcbi.1002888)
    • Liepe J, Filippi S, Komorowski M., Stumpf M. 2013 Maximizing the information content of experiments in systems biology. PLoS Comput. Biol. 9, e1002888. (doi:10.1371/journal.pcbi.1002888)
    • (2013) PLoS Comput. Biol. , vol.9
    • Liepe, J.1    Filippi, S.2    Komorowski, M.3    Stumpf, M.4
  • 29
    • 84874225515 scopus 로고    scopus 로고
    • Optimal variational perturbations for the inference of stochastic reaction dynamics
    • Maui, Hawaii, 10-13 December New York, NY: IEEE
    • Zechner C, Nandy P, Unger M., Koeppl H. 2012 Optimal variational perturbations for the inference of stochastic reaction dynamics. in IEEE 51st Annual Conf. on Decision and Control (CDC), Maui, Hawaii, 10-13 December, pp. 5336-5341. New York, NY: IEEE.
    • (2012) IEEE 51st Annual Conf. on Decision and Control (CDC) , pp. 5336-5341
    • Zechner, C.1    Nandy, P.2    Unger, M.3    Koeppl, H.4
  • 30
    • 84879448507 scopus 로고    scopus 로고
    • Convergence in parameters and predictions using computational experimental design
    • (doi:10.1098/rsfs.2013.0008)
    • Hagen D, White J, Tidor B. 2013 Convergence in parameters and predictions using computational experimental design. Interface Focus 3, 20130008. (doi:10.1098/rsfs.2013.0008)
    • (2013) Interface Focus , vol.3 , pp. 20130008
    • Hagen, D.1    White, J.2    Tidor, B.3
  • 32
    • 0031879114 scopus 로고
    • Stochastic kinetic analysis of developmental pathway bifurcation in phage lambda-infected escherichia coli cells
    • Arkin A, Ross J, McAdams H. 1988 Stochastic kinetic analysis of developmental pathway bifurcation in phage lambda-infected Escherichia coli cells. Genetics 149, 1633-1648.
    • (1988) Genetics , vol.149 , pp. 1633-1648
    • Arkin, A.1    Ross, J.2    Mcadams, H.3
  • 33
    • 33750172093 scopus 로고
    • A characterization of the normal distribution
    • (doi:10.1214/aoms/1177731647)
    • Lukacs E. 1942 A characterization of the normal distribution. Ann. Math. Stat. 13, 91-93. (doi:10.1214/aoms/1177731647)
    • (1942) Ann. Math. Stat. , vol.13 , pp. 91-93
    • Lukacs, E.1
  • 34
    • 0043215132 scopus 로고
    • Bounds and expansions for fisher information when the moments are known
    • (doi:10.1093/biomet/71.1.101)
    • Jarret R. 1984 Bounds and expansions for Fisher information when the moments are known. Biometrika 71, 101-113. (doi:10.1093/biomet/71.1.101)
    • (1984) Biometrika , vol.71 , pp. 101-113
    • Jarret, R.1
  • 35
    • 58849137994 scopus 로고    scopus 로고
    • Systems biology: Experimental design
    • (doi:10.1111/j.1742-4658.2008.06843.x)
    • Kreutz C, Timmer J. 2009 Systems biology: experimental design. FEBS J. 276, 923-942. (doi:10.1111/j.1742-4658.2008.06843.x)
    • (2009) FEBS J. , vol.276 , pp. 923-942
    • Kreutz, C.1    Timmer, J.2
  • 36
    • 0014467354 scopus 로고
    • Designing experiments for precise estimation of all or some of the constants in a mechanistic model
    • (doi:10.1002/cjce.5450470114)
    • Hunter W, Hill W, Henson T. 1969 Designing experiments for precise estimation of all or some of the constants in a mechanistic model. Can. J. Chem. Eng. 47, 76-80. (doi:10.1002/cjce.5450470114)
    • (1969) Can. J. Chem. Eng. , vol.47 , pp. 76-80
    • Hunter, W.1    Hill, W.2    Henson, T.3
  • 37
    • 0025400871 scopus 로고
    • Qualitative and quantitative experiment design for phenomenological models - A survey
    • (doi:10.1016/0005-1098(90)90116-Y)
    • Walter E, Pronzato L. 1990 Qualitative and quantitative experiment design for phenomenological models-a survey. Automatica 26, 195-213. (doi:10.1016/0005-1098(90)90116-Y)
    • (1990) Automatica , vol.26 , pp. 195-213
    • Walter, E.1    Pronzato, L.2
  • 38
    • 0022093313 scopus 로고
    • Robust experimental design via stochastic approximation
    • (doi:10.1016/0025-5564(85)90068-9)
    • Pronzato L, Walter E. 1985 Robust experimental design via stochastic approximation. Math. Biosci. 75, 103-120. (doi:10.1016/0025-5564(85)90068-9)
    • (1985) Math. Biosci. , vol.75 , pp. 103-120
    • Pronzato, L.1    Walter, E.2
  • 39
    • 0000083715 scopus 로고
    • Optimal Bayesian design applied to logistic regression experiments
    • (doi:10.1016/0378-3758(89)90004-9)
    • Chaloner K, Larntz K. 1989 Optimal Bayesian design applied to logistic regression experiments. J. Stat. Plan Inference 21, 191-208. (doi:10.1016/0378-3758(89)90004-9)
    • (1989) J. Stat. Plan Inference , vol.21 , pp. 191-208
    • Chaloner, K.1    Larntz, K.2
  • 40
    • 79956204640 scopus 로고    scopus 로고
    • Analysis, design and implementation of a novel scheme for in-vivo control of synthetic gene regulatory networks
    • (doi:10.1016/j.automatica.2011.01.073)
    • Menolascina F, di Bernardo M, di Bernardo D. 2011 Analysis, design and implementation of a novel scheme for in-vivo control of synthetic gene regulatory networks. Automatica 47, 1265-1270. (doi:10.1016/j.automatica.2011. 01.073)
    • (2011) Automatica , vol.47 , pp. 1265-1270
    • Menolascina, F.1    Di Bernardo, M.2    Di Bernardo, D.3
  • 41
  • 42
    • 0036790975 scopus 로고    scopus 로고
    • Intrinsic and extrinsic contributions to stochasticity in gene expression
    • (doi:10.1073/pnas.162041399)
    • Swain P, Elowitz M, Siggia E. 2002 Intrinsic and extrinsic contributions to stochasticity in gene expression. Proc. Natl Acad. Sci. USA 99, 12795-12800. (doi:10.1073/pnas.162041399)
    • (2002) Proc. Natl Acad. Sci. USA , vol.99 , pp. 12795-12800
    • Swain, P.1    Elowitz, M.2    Siggia, E.3
  • 43
    • 84861204172 scopus 로고    scopus 로고
    • Identifying sources of variation and the flow of information in biochemical networks
    • (doi:10.1073/pnas.1119407109)
    • Bowsher C, Swain P. 2012 Identifying sources of variation and the flow of information in biochemical networks. Proc. Natl Acad. Sci. USA 109, E1320-E1328. (doi:10.1073/pnas.1119407109)
    • (2012) Proc. Natl Acad. Sci. USA , vol.109
    • Bowsher, C.1    Swain, P.2
  • 44
    • 33750247101 scopus 로고    scopus 로고
    • Linking stochastic dynamics to population distribution: An analytical framework of gene expression
    • (doi:10.1103/PhysRevLett.97.168302)
    • Friedman N, Cai L, Xie S. 2006 Linking stochastic dynamics to population distribution: an analytical framework of gene expression. Phys. Rev. Lett. 97, 168302. (doi:10.1103/PhysRevLett.97.168302)
    • (2006) Phys. Rev. Lett. , vol.97 , pp. 168302
    • Friedman, N.1    Cai, L.2    Xie, S.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.