-
1
-
-
33646878930
-
-
10.1186/gb-2005-6-7-r61
-
M. Carter, A. Sharov, V. VanBuren, D. Dudekula, C. Carmack, C. Nelson, and M. Ko, Genome Biol. 6, R61 (2005). 10.1186/gb-2005-6-7-r61
-
(2005)
Genome Biol.
, vol.6
, pp. 61
-
-
Carter, M.1
Sharov, A.2
Vanburen, V.3
Dudekula, D.4
Carmack, C.5
Nelson, C.6
Ko, M.7
-
3
-
-
0034050722
-
Noise-based switches and amplifiers for gene expression
-
DOI 10.1073/pnas.040411297
-
J. Hasty, J. Pradines, M. Dolnik, and J. Collins, Proc. Natl. Acad. Sci. U.S.A. 97, 2075 (2000). 10.1073/pnas.040411297 (Pubitemid 30134024)
-
(2000)
Proceedings of the National Academy of Sciences of the United States of America
, vol.97
, Issue.5
, pp. 2075-2080
-
-
Hasty, J.1
Pradines, J.2
Dolnik, M.3
Collins, J.J.4
-
4
-
-
33749842033
-
Deviant effects in molecular reaction pathways
-
DOI 10.1038/nbt1253, PII NBT1253
-
M. Samoilov and A. Arkin, Nat. Biotechnol. 24, 1235 (2006). 10.1038/nbt1253 (Pubitemid 44564768)
-
(2006)
Nature Biotechnology
, vol.24
, Issue.10
, pp. 1235-1240
-
-
Samoilov, M.S.1
Arkin, A.P.2
-
5
-
-
44049109914
-
-
10.1016/0378-4371(92)90283-V
-
D. Gillespie, Physica A 188, 404 (1992). 10.1016/0378-4371(92)90283-V
-
(1992)
Physica A
, vol.188
, pp. 404
-
-
Gillespie, D.1
-
6
-
-
33751347484
-
The finite state projection algorithm for the solution of the chemical master equation
-
DOI 10.1063/1.2145882, 044104
-
B. Munsky and M. Khammash, J. Chem. Phys. 124, 044104 (2006). 10.1063/1.2145882 (Pubitemid 43166302)
-
(2006)
Journal of Chemical Physics
, vol.124
, Issue.4
, pp. 1-13
-
-
Munsky, B.1
Khammash, M.2
-
8
-
-
0017030517
-
A general method for numerically simulating the stochastic time evolution of coupled chemical reactions
-
DOI 10.1016/0021-9991(76)90041-3
-
D. Gillespie, J. Comput. Phys. 22, 403 (1976). 10.1016/0021-9991(76) 90041-3 (Pubitemid 8008311)
-
(1976)
Journal of Computational Physics
, vol.22
, Issue.4
, pp. 403-434
-
-
Gillepsie, D.T.1
-
9
-
-
80555153433
-
-
It is generally accepted that chemical reactions occur in a series of elementary reactions and reactions containing more than two molecules can be expressed as a combination of mono- and bimolecular reactions. Therefore, we will consider networks that contain at most bimolecular reactions
-
It is generally accepted that chemical reactions occur in a series of elementary reactions and reactions containing more than two molecules can be expressed as a combination of mono- and bimolecular reactions. Therefore, we will consider networks that contain at most bimolecular reactions.
-
-
-
-
10
-
-
50649094673
-
Moment closure for biochemical networks
-
IEEE, New York
-
J. Hespanha, Moment closure for biochemical networks., in Proceedings of the IEEE 3rd International Symposium on Communications, Control and Signal Processing (ISCCSP), St. Julians, Malta, 2008 (IEEE, New York, 2008), pp. 142-147.
-
(2008)
Proceedings of the IEEE 3rd International Symposium on Communications, Control and Signal Processing (ISCCSP), St. Julians, Malta, 2008
, pp. 142-147
-
-
Hespanha, J.1
-
17
-
-
79953155448
-
Hybrid moment computation algorithm for biochemical reaction networks
-
IEEE, New York
-
Y. Zhao, J. Kim, and J. Hespanha, Hybrid moment computation algorithm for biochemical reaction networks., in Proceedings of the 49th IEEE Conference on Decision and Control (CDC), Atlanta, GA, USA, 2010 (IEEE, New York, 2010), pp. 1693-1698.
-
(2010)
Proceedings of the 49th IEEE Conference on Decision and Control (CDC), Atlanta, GA, USA, 2010
, pp. 1693-1698
-
-
Zhao, Y.1
Kim, J.2
Hespanha, J.3
-
19
-
-
0029462198
-
-
10.1007/BF01212364
-
B. La Scala, R. Bitmead, and M. James, Math. Control, Signals, Syst. 8, 1 (1995). 10.1007/BF01212364
-
(1995)
Math. Control, Signals, Syst.
, vol.8
, pp. 1
-
-
La Scala, B.1
Bitmead, R.2
James, M.3
-
22
-
-
80555141222
-
-
See supplementary material at E-JCPSA6-135-040140 for additional figures and discussions on the examples
-
See supplementary material at http://dx.doi.org/10.1063/1.3654135 E-JCPSA6-135-040140 for additional figures and discussions on the examples.
-
-
-
|