메뉴 건너뛰기




Volumn 39, Issue 1, 2014, Pages 89-122

Hubness-aware shared neighbor distances for high-dimensional k-nearest neighbor classification

Author keywords

Classification; Curse of dimensionality; Hubs; k nearest neighbor; Metric learning; Shared neighbor distances

Indexed keywords

CLUSTERING ALGORITHMS; LEARNING ALGORITHMS; LEARNING SYSTEMS; MOTION COMPENSATION; NEAREST NEIGHBOR SEARCH;

EID: 84896546077     PISSN: 02191377     EISSN: 02193116     Source Type: Journal    
DOI: 10.1007/s10115-012-0607-5     Document Type: Article
Times cited : (19)

References (64)
  • 5
    • 67649105393 scopus 로고    scopus 로고
    • When is 'nearest neighbour' meaningful: a converse theorem and implications
    • Durrant RJ, Kabán A (2009) When is 'nearest neighbour' meaningful: a converse theorem and implications. J Complex 25(4): 385-397.
    • (2009) J Complex , vol.25 , Issue.4 , pp. 385-397
    • Durrant, R.J.1    Kabán, A.2
  • 13
    • 84873421776 scopus 로고    scopus 로고
    • Using mutual proximity to improve content-based audio similarity
    • Schnitzer D, Flexer A, Schedl M, Widmer G (2011) Using mutual proximity to improve content-based audio similarity. In: ISMIR'11, pp 79-84.
    • (2011) In: ISMIR'11 , pp. 79-84
    • Schnitzer, D.1    Flexer, A.2    Schedl, M.3    Widmer, G.4
  • 15
    • 78649417385 scopus 로고    scopus 로고
    • Hubs in space: popular nearest neighbors in high-dimensional data
    • Radovanović M, Nanopoulos A, Ivanović M (2011) Hubs in space: popular nearest neighbors in high-dimensional data. J Mach Learn Res 11: 2487-2531.
    • (2011) J Mach Learn Res , vol.11 , pp. 2487-2531
    • Radovanović, M.1    Nanopoulos, A.2    Ivanović, M.3
  • 16
    • 0015680655 scopus 로고
    • Clustering using a similarity measure based on shared near neighbors
    • Jarvis RA, Patrick EA (1973) Clustering using a similarity measure based on shared near neighbors. IEEE Trans Comput 22: 1025-1034.
    • (1973) IEEE Trans Comput , vol.22 , pp. 1025-1034
    • Jarvis, R.A.1    Patrick, E.A.2
  • 20
    • 84894218650 scopus 로고    scopus 로고
    • Analysis of different similarity measure functions and their impacts on shared nearest neighbor clustering approach
    • Anil KumarPatidar, Agrawal JMN (2012) Analysis of different similarity measure functions and their impacts on shared nearest neighbor clustering approach. Int J Comput Appl 40: 1-5.
    • (2012) Int J Comput Appl , vol.40 , pp. 1-5
    • Anil, K.P.1    Agrawal, J.M.N.2
  • 21
    • 84896545939 scopus 로고    scopus 로고
    • Outlier detection and semi-supervised clustering algorithm based on shared nearest neighbors
    • Zheng L-Z, Huang DC (2012) Outlier detection and semi-supervised clustering algorithm based on shared nearest neighbors. Comput Syst Appl 29: 117-121.
    • (2012) Comput Syst Appl , vol.29 , pp. 117-121
    • Zheng, L.-Z.1    Huang, D.C.2
  • 24
    • 35248893423 scopus 로고    scopus 로고
    • Finding natural clusters using multi-clusterer combiner based on shared nearest neighbors
    • Springer, Berlin, Heidelberg
    • Ayad H, Kamel M (2003) Finding natural clusters using multi-clusterer combiner based on shared nearest neighbors. In: Multiple classifier systems. vol 2709 of Lecture Notes in computer science. Springer, Berlin, Heidelberg, pp 159-159.
    • (2003) In: Multiple classifier systems. vol 2709 of Lecture Notes in computer science , pp. 159
    • Ayad, H.1    Kamel, M.2
  • 30
    • 84896546763 scopus 로고    scopus 로고
    • Nearest neighbor voting in high-dimensional data: learning from past occurences
    • Tomašev N, Mladenić D Nearest neighbor voting in high-dimensional data: learning from past occurences. In: PhD forum, ICDM conference.
    • In: PhD forum, ICDM conference
    • Tomašev, N.1    Mladenić, D.2
  • 31
    • 84865237950 scopus 로고    scopus 로고
    • Nearest neighbor voting in high dimensional data: Learning from past occurrences
    • Tomašev N, Mladenić D (2012) Nearest neighbor voting in high dimensional data: Learning from past occurrences. Comput Sci Inf Syst 9(2): 691-712.
    • (2012) Comput Sci Inf Syst , vol.9 , Issue.2 , pp. 691-712
    • Tomašev, N.1    Mladenić, D.2
  • 32
    • 84885421686 scopus 로고    scopus 로고
    • The influence of weighting the k-occurrences on hubness-aware classification methods
    • Tomašev N, Mladenić D (2011) The influence of weighting the k-occurrences on hubness-aware classification methods. In: Proceedings of the SiKDD conference.
    • (2011) In: Proceedings of the SiKDD conference
    • Tomašev, N.1    Mladenić, D.2
  • 34
    • 0000388992 scopus 로고
    • Consistent nonparametric regression
    • Stone CJ (1977) Consistent nonparametric regression. Ann Stat 5: 595-645.
    • (1977) Ann Stat , vol.5 , pp. 595-645
    • Stone, C.J.1
  • 35
    • 21844511932 scopus 로고
    • On the strong universal consistency of nearest neighbor regression function estimates
    • Devroye L, Gyorfi AK, Lugosi G (1994) On the strong universal consistency of nearest neighbor regression function estimates. Ann Stat 22: 1371-1385.
    • (1994) Ann Stat , vol.22 , pp. 1371-1385
    • Devroye, L.1    Gyorfi, A.K.2    Lugosi, G.3
  • 36
    • 84926662675 scopus 로고
    • Nearest neighbor pattern classification
    • Cover TM, Hart PE (1967) Nearest neighbor pattern classification. IEEE Trans Inf Theory IT 13(1): 21-27.
    • (1967) IEEE Trans Inf Theory IT , vol.13 , Issue.1 , pp. 21-27
    • Cover, T.M.1    Hart, P.E.2
  • 41
    • 24944577617 scopus 로고    scopus 로고
    • A binary neural k-nearest neighbour technique
    • September
    • Hodge VJ, Austin J (September 2005) A binary neural k-nearest neighbour technique. Knowl Inf Syst (KAIS) 8(3): 276-291.
    • (2005) Knowl Inf Syst (KAIS) , vol.8 , Issue.3 , pp. 276-291
    • Hodge, V.J.1    Austin, J.2
  • 44
    • 78650282967 scopus 로고    scopus 로고
    • Differential evolution for optimizing the positioning of prototypes in nearest neighbor classification
    • Triguero I, García S, Herrera F (2011) Differential evolution for optimizing the positioning of prototypes in nearest neighbor classification. Pattern Recognit 44(4): 901-916.
    • (2011) Pattern Recognit , vol.44 , Issue.4 , pp. 901-916
    • Triguero, I.1    García, S.2    Herrera, F.3
  • 45
    • 81455142768 scopus 로고    scopus 로고
    • k-information gain scaled nearest neighbors: a novel approach to classifying protein-protein interaction-related documents
    • Ambert KH, Cohen AM (2012) k-information gain scaled nearest neighbors: a novel approach to classifying protein-protein interaction-related documents. EEE/ACM Trans Comput Biol Bioinform 9(1): 305-310.
    • (2012) EEE/ACM Trans Comput Biol Bioinform , vol.9 , Issue.1 , pp. 305-310
    • Ambert, K.H.1    Cohen, A.M.2
  • 51
    • 17844387127 scopus 로고    scopus 로고
    • Neighbor-weighted k-nearest neighbor for unbalanced text corpus
    • May
    • Tan S (May 2005) Neighbor-weighted k-nearest neighbor for unbalanced text corpus. Expert Syst Appl 28: 667-671.
    • (2005) Expert Syst Appl , vol.28 , pp. 667-671
    • Tan, S.1
  • 52
    • 77951570192 scopus 로고    scopus 로고
    • Weighted neighborhood classifier for the classification of imbalanced tumor dataset
    • Wang S, Li X, Xia JF, Zhang XP (2010) Weighted neighborhood classifier for the classification of imbalanced tumor dataset. J Circuits Syst Comput, pp 259-273.
    • (2010) J Circuits Syst Comput , pp. 259-273
    • Wang, S.1    Li, X.2    Xia, J.F.3    Zhang, X.P.4
  • 53
    • 71749101234 scopus 로고    scopus 로고
    • Knowledge discovery from imbalanced and noisy data
    • (December
    • van Hulse J, Khoshgoftaar T (December 2009) Knowledge discovery from imbalanced and noisy data. Data Knowl Eng 68(12): 1513-1542.
    • (2009) Data Knowl Eng , vol.68 , Issue.12 , pp. 1513-1542
    • van Hulse, J.1    Khoshgoftaar, T.2
  • 54
    • 70449440398 scopus 로고    scopus 로고
    • Fast approximate kNN graph construction for high dimensional data via recursive Lanczos bisection
    • Chen J, ren Fang H, Saad Y (2009) Fast approximate kNN graph construction for high dimensional data via recursive Lanczos bisection. J Mach Learn Res 10: 1989-2012.
    • (2009) J Mach Learn Res , vol.10 , pp. 1989-2012
    • Chen, J.1    ren Fang, H.2    Saad, Y.3
  • 56
    • 3042535216 scopus 로고    scopus 로고
    • Distinctive image features from scale-invariant keypoints
    • (November
    • Lowe DG (November 2004) Distinctive image features from scale-invariant keypoints. Int J Comput Vis 60(2): 91.
    • (2004) Int J Comput Vis , vol.60 , Issue.2 , pp. 91
    • Lowe, D.G.1
  • 59
    • 84858834586 scopus 로고    scopus 로고
    • Identification of different types of minority class examples in imbalanced data
    • In: Corchado E, Snel V, Abraham A, Wozniak M, Graa M, Cho SB (eds), Springer, Berlin, Heidelberg
    • Napierala K, Stefanowski J (2012) Identification of different types of minority class examples in imbalanced data. In: Corchado E, Snel V, Abraham A, Wozniak M, Graa M, Cho SB (eds) Hybrid artificial intelligent systems, vol 7209 of lecture notes in computer science. Springer, Berlin, Heidelberg, pp 139-150.
    • (2012) Hybrid artificial intelligent systems, vol 7209 of lecture notes in computer science , pp. 139-150
    • Napierala, K.1    Stefanowski, J.2
  • 60
    • 17744406666 scopus 로고    scopus 로고
    • An extended set of haar-like features for rapid object detection
    • Lienhart R, Maydt J (2002) An extended set of haar-like features for rapid object detection. In: IEEE ICIP 2002, pp 900-903.
    • (2002) In: IEEE ICIP 2002 , pp. 900-903
    • Lienhart, R.1    Maydt, J.2
  • 63
    • 84862279781 scopus 로고    scopus 로고
    • Semi-supervised clustering with pairwise constraints: a discriminative approach
    • Lu Z (2007) Semi-supervised clustering with pairwise constraints: a discriminative approach. J Mach Learn Res-Proceedings Track, pp 299-306.
    • (2007) J Mach Learn Res-Proceedings Track , pp. 299-306
    • Lu, Z.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.