메뉴 건너뛰기




Volumn 269, Issue , 2014, Pages 98-109

Sulfate reduction at low pH to remediate acid mine drainage

Author keywords

Acid mine rock drainage; Acidophilic SRB; Heavy metals; Reactors; Sulfate reduction

Indexed keywords

ALKALINITY; HEAVY METALS; NUCLEAR REACTORS;

EID: 84896543535     PISSN: 03043894     EISSN: 18733336     Source Type: Journal    
DOI: 10.1016/j.jhazmat.2013.12.032     Document Type: Article
Times cited : (322)

References (164)
  • 1
    • 43849095105 scopus 로고    scopus 로고
    • The ecology and biotechnology of sulphate-reducing bacteria
    • Muyzer G., Stams A.J.M. The ecology and biotechnology of sulphate-reducing bacteria. Nat. Rev. Microbiol. 2008, 6:441-454.
    • (2008) Nat. Rev. Microbiol. , vol.6 , pp. 441-454
    • Muyzer, G.1    Stams, A.J.M.2
  • 2
    • 33748558473 scopus 로고    scopus 로고
    • Hydrogen sulfide: clandestine microbial messenger?
    • Lloyd D. Hydrogen sulfide: clandestine microbial messenger?. Trends Microbiol. 2006, 14:456-462.
    • (2006) Trends Microbiol. , vol.14 , pp. 456-462
    • Lloyd, D.1
  • 3
    • 0017343370 scopus 로고
    • Energy conservation in chemotrophic anaerobic bacteria
    • Thauer R.K., Jungermann K., Decker K. Energy conservation in chemotrophic anaerobic bacteria. Bacteriol. Rev. 1977, 41:100.
    • (1977) Bacteriol. Rev. , vol.41 , pp. 100
    • Thauer, R.K.1    Jungermann, K.2    Decker, K.3
  • 4
    • 1642480180 scopus 로고    scopus 로고
    • Bioleaching review part A: Progress in bioleaching: fundamentals and mechanisms of bacterial metal sulfide oxidation
    • Rohwerder T., Gehrke T., Kinzler K., Sand W. Bioleaching review part A: Progress in bioleaching: fundamentals and mechanisms of bacterial metal sulfide oxidation. Appl. Microbiol. Biotechnol. 2003, 63:239-248.
    • (2003) Appl. Microbiol. Biotechnol. , vol.63 , pp. 239-248
    • Rohwerder, T.1    Gehrke, T.2    Kinzler, K.3    Sand, W.4
  • 5
    • 0028864512 scopus 로고
    • Sulfur chemistry, biofilm, and the (in)direct attack mechanism - a critical evaluation of bacterial leaching
    • Sand W., Gerke T., Hallmann R., Schippers A. Sulfur chemistry, biofilm, and the (in)direct attack mechanism - a critical evaluation of bacterial leaching. Appl. Microbiol. Biotechnol. 1995, 43:961-966.
    • (1995) Appl. Microbiol. Biotechnol. , vol.43 , pp. 961-966
    • Sand, W.1    Gerke, T.2    Hallmann, R.3    Schippers, A.4
  • 6
    • 14744299767 scopus 로고
    • Acidic mine drainage: the rate-determining step
    • Singer P.C., Stumm W. Acidic mine drainage: the rate-determining step. Science 1970, 167:1121-1123.
    • (1970) Science , vol.167 , pp. 1121-1123
    • Singer, P.C.1    Stumm, W.2
  • 7
    • 0002300949 scopus 로고
    • Oxidation of pyrite by iron sulfate solutions
    • Garrels R., Thompson M. Oxidation of pyrite by iron sulfate solutions. Am. J. Sci. 1960, 259:57-67.
    • (1960) Am. J. Sci. , vol.259 , pp. 57-67
    • Garrels, R.1    Thompson, M.2
  • 8
    • 0028555637 scopus 로고
    • The kinetics and electrochemical rate-determining step of aqueous pyrite oxidation
    • Williamson M.A., Rimstidt J.D. The kinetics and electrochemical rate-determining step of aqueous pyrite oxidation. Geochim. Cosmochim. Acta 1994, 58:5443-5454.
    • (1994) Geochim. Cosmochim. Acta , vol.58 , pp. 5443-5454
    • Williamson, M.A.1    Rimstidt, J.D.2
  • 9
    • 0034105332 scopus 로고    scopus 로고
    • The kinetics of the oxidation of pyrite by ferric ions and dissolved oxygen: an electrochemical study
    • Holmes P.R., Crundwell F.K. The kinetics of the oxidation of pyrite by ferric ions and dissolved oxygen: an electrochemical study. Geochim. Cosmochim. Acta 2000, 64:263-274.
    • (2000) Geochim. Cosmochim. Acta , vol.64 , pp. 263-274
    • Holmes, P.R.1    Crundwell, F.K.2
  • 10
    • 0035253889 scopus 로고    scopus 로고
    • (Bio)chemistry of bacterial leaching - direct vs. indirect bioleaching
    • Sand W., Gehrke T., Jozsa P.G., Schippers A. (Bio)chemistry of bacterial leaching - direct vs. indirect bioleaching. Hydrometallurgy 2001, 59:159-175.
    • (2001) Hydrometallurgy , vol.59 , pp. 159-175
    • Sand, W.1    Gehrke, T.2    Jozsa, P.G.3    Schippers, A.4
  • 11
    • 52949105398 scopus 로고    scopus 로고
    • Carbon, iron and sulfur metabolism in acidophilic micro-organisms
    • Johnson D.B., Hallberg K.B. Carbon, iron and sulfur metabolism in acidophilic micro-organisms. Adv. Microb. Physiol. 2008, 54:201-255.
    • (2008) Adv. Microb. Physiol. , vol.54 , pp. 201-255
    • Johnson, D.B.1    Hallberg, K.B.2
  • 13
    • 0032423975 scopus 로고    scopus 로고
    • Biodiversity and ecology of acidophilic microorganisms
    • Johnson D.B. Biodiversity and ecology of acidophilic microorganisms. FEMS Microbiol. Ecol. 1998, 27:307-317.
    • (1998) FEMS Microbiol. Ecol. , vol.27 , pp. 307-317
    • Johnson, D.B.1
  • 14
    • 0027047192 scopus 로고
    • Metals in water. Determining natural background concentrations in mineralized areas
    • Runnells D.D., Shepherd T.A., Angino E.E. Metals in water. Determining natural background concentrations in mineralized areas. Environ. Sci. Technol. 1992, 26:2316-2323.
    • (1992) Environ. Sci. Technol. , vol.26 , pp. 2316-2323
    • Runnells, D.D.1    Shepherd, T.A.2    Angino, E.E.3
  • 15
    • 0033616562 scopus 로고    scopus 로고
    • Negative pH, efflorescent mineralogy, and consequences for environmental restoration at the Iron Mountain Superfund site, California
    • Nordstrom D.K., Alpers C.N. Negative pH, efflorescent mineralogy, and consequences for environmental restoration at the Iron Mountain Superfund site, California. Proc. Natl. Acad. Sci. U. S. A. 1999, 96:3455-3462.
    • (1999) Proc. Natl. Acad. Sci. U. S. A. , vol.96 , pp. 3455-3462
    • Nordstrom, D.K.1    Alpers, C.N.2
  • 16
    • 0141741231 scopus 로고    scopus 로고
    • The microbiology of acidic mine waters
    • Johnson D.B., Hallberg K.B. The microbiology of acidic mine waters. Res. Microbiol. 2003, 154:466-473.
    • (2003) Res. Microbiol. , vol.154 , pp. 466-473
    • Johnson, D.B.1    Hallberg, K.B.2
  • 17
    • 12944323182 scopus 로고    scopus 로고
    • Acid mine drainage remediation options: a review
    • Johnson D.B., Hallberg K.B. Acid mine drainage remediation options: a review. Sci. Total Environ. 2005, 338:3-14.
    • (2005) Sci. Total Environ. , vol.338 , pp. 3-14
    • Johnson, D.B.1    Hallberg, K.B.2
  • 21
    • 42149159370 scopus 로고    scopus 로고
    • The acidic mine pit lakes of the Iberian Pyrite Belt: an approach to their physical limnology and hydrogeochemistry
    • Sánchez España J., Pamo E.L., Pastor E.S., Ercilla M.D. The acidic mine pit lakes of the Iberian Pyrite Belt: an approach to their physical limnology and hydrogeochemistry. Appl. Geochem. 2008, 23:1260-1287.
    • (2008) Appl. Geochem. , vol.23 , pp. 1260-1287
    • Sánchez España, J.1    Pamo, E.L.2    Pastor, E.S.3    Ercilla, M.D.4
  • 22
    • 0034207662 scopus 로고    scopus 로고
    • Treatment of acid mine water by use of heavy metal precipitation and ion exchange
    • Feng D., Aldrich C., Tan H. Treatment of acid mine water by use of heavy metal precipitation and ion exchange. Miner. Eng. 2000, 13:623-642.
    • (2000) Miner. Eng. , vol.13 , pp. 623-642
    • Feng, D.1    Aldrich, C.2    Tan, H.3
  • 23
    • 43049103879 scopus 로고    scopus 로고
    • Biological recovery of metals, sulfur and water in the mining and metallurgical industry
    • IWA Publishing, London, UK, P.N.L. Lens, L.W. Hulshoff Pol, P. Wilderer, T. Asano (Eds.)
    • Weijma J., Copini C., Buisman C., Schultz C. Biological recovery of metals, sulfur and water in the mining and metallurgical industry. Water Recycling and Recovery in Industry 2002, IWA Publishing, London, UK. P.N.L. Lens, L.W. Hulshoff Pol, P. Wilderer, T. Asano (Eds.).
    • (2002) Water Recycling and Recovery in Industry
    • Weijma, J.1    Copini, C.2    Buisman, C.3    Schultz, C.4
  • 24
    • 0034865365 scopus 로고    scopus 로고
    • Remediation of acidic waste waters using immobilised, acidophilic sulfate-reducing bacteria
    • Kolmert Å., Johnson D.B. Remediation of acidic waste waters using immobilised, acidophilic sulfate-reducing bacteria. J. Chem. Technol. Biotechnol. 2001, 76:836-843.
    • (2001) J. Chem. Technol. Biotechnol. , vol.76 , pp. 836-843
    • Kolmert, Å.1    Johnson, D.B.2
  • 25
    • 0028180166 scopus 로고
    • Wetland treatment for trace metal removal from mine drainage: the importance of aerobic and anaerobic processes
    • Eger P. Wetland treatment for trace metal removal from mine drainage: the importance of aerobic and anaerobic processes. Water Sci. Technol. 1994, 29:249-256.
    • (1994) Water Sci. Technol. , vol.29 , pp. 249-256
    • Eger, P.1
  • 26
    • 84872003653 scopus 로고    scopus 로고
    • Organic substrates as electron donors in permeable reactive barriers for removal of heavy metals from acid mine drainage
    • Kijjanapanich P., Pakdeerattanamint K., Lens P., Annachhatre A. Organic substrates as electron donors in permeable reactive barriers for removal of heavy metals from acid mine drainage. Environ. Technol. 2012, 33:2635-2644.
    • (2012) Environ. Technol. , vol.33 , pp. 2635-2644
    • Kijjanapanich, P.1    Pakdeerattanamint, K.2    Lens, P.3    Annachhatre, A.4
  • 27
    • 5644233944 scopus 로고    scopus 로고
    • Chemical characterisation of natural organic substrates for biological mitigation of acid mine drainage
    • Gibert O., De Pablo J., Luis Cortina J., Ayora C. Chemical characterisation of natural organic substrates for biological mitigation of acid mine drainage. Water Res. 2004, 38:4186-4196.
    • (2004) Water Res. , vol.38 , pp. 4186-4196
    • Gibert, O.1    De Pablo, J.2    Luis Cortina, J.3    Ayora, C.4
  • 28
    • 0027643251 scopus 로고
    • Alkalinity generation by Fe(III) reduction versus sulfate reduction in wetlands constructed for acid mine drainage treatment
    • Vile M.A., Wieder R.K. Alkalinity generation by Fe(III) reduction versus sulfate reduction in wetlands constructed for acid mine drainage treatment. Water Air Soil Pollut. 1993, 69:425-441.
    • (1993) Water Air Soil Pollut. , vol.69 , pp. 425-441
    • Vile, M.A.1    Wieder, R.K.2
  • 29
    • 0031239577 scopus 로고    scopus 로고
    • A full-scale porous reactive wall for prevention of acid mine drainage
    • Benner S.G., Blowes D.W., Ptacek C.J. A full-scale porous reactive wall for prevention of acid mine drainage. Ground Water Monit. Remediation 1997, 17:99-107.
    • (1997) Ground Water Monit. Remediation , vol.17 , pp. 99-107
    • Benner, S.G.1    Blowes, D.W.2    Ptacek, C.J.3
  • 31
    • 12944303646 scopus 로고    scopus 로고
    • Biogeochemistry of the compost bioreactor components of a composite acid mine drainage passive remediation system
    • Johnson D., Hallberg K. Biogeochemistry of the compost bioreactor components of a composite acid mine drainage passive remediation system. Sci. Total Environ. 2005, 338:81-93.
    • (2005) Sci. Total Environ. , vol.338 , pp. 81-93
    • Johnson, D.1    Hallberg, K.2
  • 32
    • 33846196895 scopus 로고    scopus 로고
    • Post-mortem findings on the performance of engineered SRB field-bioreactors for acid mine drainage control
    • The Australian Institute of Mining and Metallurgy, Cairns, Australia
    • Zaluski M., Trudnowski J., Harrington-Baker M., Bless D. Post-mortem findings on the performance of engineered SRB field-bioreactors for acid mine drainage control. Proceedings from the Sixth International Conference on Acid Rock Drainage 2003, The Australian Institute of Mining and Metallurgy, Cairns, Australia.
    • (2003) Proceedings from the Sixth International Conference on Acid Rock Drainage
    • Zaluski, M.1    Trudnowski, J.2    Harrington-Baker, M.3    Bless, D.4
  • 34
    • 0021562382 scopus 로고
    • Role of available carbon and nitrogen in determining the rate of wheat straw decomposition
    • Reinertsen S., Elliot L., Cochran V., Campbell G. Role of available carbon and nitrogen in determining the rate of wheat straw decomposition. Soil Biol. Biochem. 1984, 16:459-464.
    • (1984) Soil Biol. Biochem. , vol.16 , pp. 459-464
    • Reinertsen, S.1    Elliot, L.2    Cochran, V.3    Campbell, G.4
  • 35
    • 0026911032 scopus 로고
    • Treatment of metal-contaminated water using bacterial sulfate reduction - results from pilot-scale reactors
    • Dvorak D., Hedin R., Edenborn H., Mcintire P. Treatment of metal-contaminated water using bacterial sulfate reduction - results from pilot-scale reactors. Biotechnol. Bioeng. 1992, 40:609-616.
    • (1992) Biotechnol. Bioeng. , vol.40 , pp. 609-616
    • Dvorak, D.1    Hedin, R.2    Edenborn, H.3    Mcintire, P.4
  • 36
    • 0035314457 scopus 로고    scopus 로고
    • Treatment of acid lignite mine flooding water by means of microbial sulfate reduction
    • Glombitza F. Treatment of acid lignite mine flooding water by means of microbial sulfate reduction. Waste Manage. 2001, 21:197-203.
    • (2001) Waste Manage. , vol.21 , pp. 197-203
    • Glombitza, F.1
  • 37
    • 0345062307 scopus 로고    scopus 로고
    • Metal removal efficiencies of substrates for treating acid mine drainage of the Dalsung mine, South Korea
    • Cheong Y., Min J., Kwon K. Metal removal efficiencies of substrates for treating acid mine drainage of the Dalsung mine, South Korea. J. Geochem. Explor. 1998, 64:147-152.
    • (1998) J. Geochem. Explor. , vol.64 , pp. 147-152
    • Cheong, Y.1    Min, J.2    Kwon, K.3
  • 38
    • 0032851601 scopus 로고    scopus 로고
    • Treatment of acid mine drainage with anaerobic solid-substrate reactors
    • Drury W. Treatment of acid mine drainage with anaerobic solid-substrate reactors. Water Environ. Res. 1999, 71:1244-1250.
    • (1999) Water Environ. Res. , vol.71 , pp. 1244-1250
    • Drury, W.1
  • 39
    • 0042709543 scopus 로고    scopus 로고
    • PH, dissolved oxygen, and adsorption effects on metal removal in anaerobic bioreactors
    • Willow M., Cohen R. pH, dissolved oxygen, and adsorption effects on metal removal in anaerobic bioreactors. J. Environ. Qual. 2003, 32:1212-1221.
    • (2003) J. Environ. Qual. , vol.32 , pp. 1212-1221
    • Willow, M.1    Cohen, R.2
  • 40
    • 0028181411 scopus 로고
    • Use of cellulosic substrates for the microbial treatment of acid-mine drainage
    • Bechard G., Yamazaki H., Gould W., Bedard P. Use of cellulosic substrates for the microbial treatment of acid-mine drainage. J. Environ. Qual. 1994, 23:111-116.
    • (1994) J. Environ. Qual. , vol.23 , pp. 111-116
    • Bechard, G.1    Yamazaki, H.2    Gould, W.3    Bedard, P.4
  • 41
    • 19544377672 scopus 로고    scopus 로고
    • Analysis of bacterial diversity in acidic pond water and compost after treatment of artificial acid mine drainage for metal removal
    • Morales T.A., Dopson M., Athar R., Herbert R.B. Analysis of bacterial diversity in acidic pond water and compost after treatment of artificial acid mine drainage for metal removal. Biotechnol. Bioeng. 2005, 90:543-551.
    • (2005) Biotechnol. Bioeng. , vol.90 , pp. 543-551
    • Morales, T.A.1    Dopson, M.2    Athar, R.3    Herbert, R.B.4
  • 42
    • 0033120312 scopus 로고    scopus 로고
    • Methanol as a carbon source for microbiological treatment of acid mine drainage
    • Tsukamoto T., Miller G. Methanol as a carbon source for microbiological treatment of acid mine drainage. Water Res. 1999, 33:1365-1370.
    • (1999) Water Res. , vol.33 , pp. 1365-1370
    • Tsukamoto, T.1    Miller, G.2
  • 43
    • 0001228577 scopus 로고    scopus 로고
    • Biological treatment of acid mine drainage under sulphate-reducing conditions with solid waste materials as substrate
    • Chang I., Shin P., Kim B. Biological treatment of acid mine drainage under sulphate-reducing conditions with solid waste materials as substrate. Water Res. 2000, 34:1269-1277.
    • (2000) Water Res. , vol.34 , pp. 1269-1277
    • Chang, I.1    Shin, P.2    Kim, B.3
  • 44
    • 5644233944 scopus 로고    scopus 로고
    • Chemical characterisation of natural organic substrates for biological mitigation of acid mine drainage
    • Gibert O., de Pablo J., Cortina J., Ayora C. Chemical characterisation of natural organic substrates for biological mitigation of acid mine drainage. Water Res. 2004, 38:4186-4196.
    • (2004) Water Res. , vol.38 , pp. 4186-4196
    • Gibert, O.1    de Pablo, J.2    Cortina, J.3    Ayora, C.4
  • 45
    • 77957293605 scopus 로고    scopus 로고
    • Silage supports sulfate reduction in the treatment of metals- and sulfate-containing waste waters
    • Wakeman K.D., Erving L., Riekkola-Vanhanen M.L., Puhakka J.A. Silage supports sulfate reduction in the treatment of metals- and sulfate-containing waste waters. Water Res. 2010, 44:4932-4939.
    • (2010) Water Res. , vol.44 , pp. 4932-4939
    • Wakeman, K.D.1    Erving, L.2    Riekkola-Vanhanen, M.L.3    Puhakka, J.A.4
  • 46
    • 0030176784 scopus 로고    scopus 로고
    • Treatment of acid mine water by sulfate-reducing bacteria: results from a bench scale experiment
    • Christensen B., Laake M., Lien T. Treatment of acid mine water by sulfate-reducing bacteria: results from a bench scale experiment. Water Res. 1996, 30:1617-1624.
    • (1996) Water Res. , vol.30 , pp. 1617-1624
    • Christensen, B.1    Laake, M.2    Lien, T.3
  • 47
    • 0037209998 scopus 로고    scopus 로고
    • Substrate characterisation for a subsurface reactive barrier to treat colliery spoil leachate
    • Amos P., Younger P. Substrate characterisation for a subsurface reactive barrier to treat colliery spoil leachate. Water Res. 2003, 37:108-120.
    • (2003) Water Res. , vol.37 , pp. 108-120
    • Amos, P.1    Younger, P.2
  • 48
    • 33746153424 scopus 로고    scopus 로고
    • Characterization and reactivity assessment of organic substrates for sulphate-reducing bacteria in acid mine drainage treatment
    • Zagury G.J., Kulnieks V.I., Neculita C.M. Characterization and reactivity assessment of organic substrates for sulphate-reducing bacteria in acid mine drainage treatment. Chemosphere 2006, 64:944-954.
    • (2006) Chemosphere , vol.64 , pp. 944-954
    • Zagury, G.J.1    Kulnieks, V.I.2    Neculita, C.M.3
  • 49
    • 0032127716 scopus 로고    scopus 로고
    • Selection of reactive mixtures for use in permeable reactive walls for treatment of mine drainage
    • Waybrant K., Blowes D., Ptacek C. Selection of reactive mixtures for use in permeable reactive walls for treatment of mine drainage. Environ. Sci. Technol. 1998, 32:1972-1979.
    • (1998) Environ. Sci. Technol. , vol.32 , pp. 1972-1979
    • Waybrant, K.1    Blowes, D.2    Ptacek, C.3
  • 50
    • 0036027581 scopus 로고    scopus 로고
    • Multiple factor design for reactive mixture selection for use in reactive walls in mine drainage treatment
    • Cocos I., Zagury G., Clement B., Samson R. Multiple factor design for reactive mixture selection for use in reactive walls in mine drainage treatment. Water Res. 2002, 36:167-177.
    • (2002) Water Res. , vol.36 , pp. 167-177
    • Cocos, I.1    Zagury, G.2    Clement, B.3    Samson, R.4
  • 51
    • 33846207502 scopus 로고    scopus 로고
    • Passive treatment of acid mine drainage in bioreactors using sulfate-reducing bacteria
    • Neculita C.M., Zagury G.J., Bussiere B. Passive treatment of acid mine drainage in bioreactors using sulfate-reducing bacteria. J. Environ. Qual. 2007, 36:1-16.
    • (2007) J. Environ. Qual. , vol.36 , pp. 1-16
    • Neculita, C.M.1    Zagury, G.J.2    Bussiere, B.3
  • 52
    • 0036843729 scopus 로고    scopus 로고
    • Exploiting the genetic and biochemical capacities of bacteria for the remediation of heavy metal pollution
    • Valls M., Lorenzo V. Exploiting the genetic and biochemical capacities of bacteria for the remediation of heavy metal pollution. FEMS Microbiol. Rev. 2002, 26:327-338.
    • (2002) FEMS Microbiol. Rev. , vol.26 , pp. 327-338
    • Valls, M.1    Lorenzo, V.2
  • 54
    • 0344441366 scopus 로고    scopus 로고
    • Advances in biotreatment of acid mine drainage and biorecovery of metals: 1. Metal precipitation for recovery and recycle
    • Tabak H.H., Scharp R., Burckle J., Kawahara F.K., Govind R. Advances in biotreatment of acid mine drainage and biorecovery of metals: 1. Metal precipitation for recovery and recycle. Biodegradation 2003, 14:423-436.
    • (2003) Biodegradation , vol.14 , pp. 423-436
    • Tabak, H.H.1    Scharp, R.2    Burckle, J.3    Kawahara, F.K.4    Govind, R.5
  • 55
    • 0037674535 scopus 로고    scopus 로고
    • 2-) concentration for optimal zinc removal by sulfide precipitation in a continuously stirred tank reactor
    • 2-) concentration for optimal zinc removal by sulfide precipitation in a continuously stirred tank reactor. Water Res. 2003, 37:3709-3717.
    • (2003) Water Res. , vol.37 , pp. 3709-3717
    • Veeken, A.H.M.1    Akoto, L.2    Hulshoff Pol, L.W.3    Weijma, J.4
  • 56
    • 83255180709 scopus 로고    scopus 로고
    • Selective removal of transition metals from acidic mine waters by novel consortia of acidophilic sulfidogenic bacteria
    • ňancucheo I., Johnson D.B. Selective removal of transition metals from acidic mine waters by novel consortia of acidophilic sulfidogenic bacteria. Microb. Biotechnol. 2012, 5:34-44.
    • (2012) Microb. Biotechnol. , vol.5 , pp. 34-44
    • Ňancucheo, I.1    Johnson, D.B.2
  • 57
    • 0002019238 scopus 로고
    • The genus Desulfotomaculum
    • Springer-Verlag, New York, NY, A. Balows, H.G. Triiper, M. Dworkin, W. Harder, K.H. Schleifer (Eds.)
    • Widdel F. The genus Desulfotomaculum. The Prokaryotes 1992, 1792-1799. Springer-Verlag, New York, NY. A. Balows, H.G. Triiper, M. Dworkin, W. Harder, K.H. Schleifer (Eds.).
    • (1992) The Prokaryotes , pp. 1792-1799
    • Widdel, F.1
  • 58
    • 0028483520 scopus 로고
    • Biological sulphate reduction using gas-lift reactors fed with hydrogen and carbon dioxide as energy and carbon source
    • Van Houten R.T., Pol L.W.H., Lettinga G. Biological sulphate reduction using gas-lift reactors fed with hydrogen and carbon dioxide as energy and carbon source. Biotechnol. Bioeng. 1994, 44:586-594.
    • (1994) Biotechnol. Bioeng. , vol.44 , pp. 586-594
    • Van Houten, R.T.1    Pol, L.W.H.2    Lettinga, G.3
  • 59
    • 43149114937 scopus 로고    scopus 로고
    • Microbial sulphate reduction at a low pH
    • Koschorreck M. Microbial sulphate reduction at a low pH. FEMS Microbiol. Ecol. 2008, 64:329-342.
    • (2008) FEMS Microbiol. Ecol. , vol.64 , pp. 329-342
    • Koschorreck, M.1
  • 60
  • 61
    • 0030898579 scopus 로고    scopus 로고
    • Bioremediation of acid mine water using facultatively methylotrophic metal-tolerant sulfate-reducing bacteria
    • Hard B.C., Friedrich S., Babel W. Bioremediation of acid mine water using facultatively methylotrophic metal-tolerant sulfate-reducing bacteria. Microbiol. Res. 1997, 152:65-73.
    • (1997) Microbiol. Res. , vol.152 , pp. 65-73
    • Hard, B.C.1    Friedrich, S.2    Babel, W.3
  • 62
    • 33645293434 scopus 로고    scopus 로고
    • Sulfidogenesis in low pH (3.8-4.2) media by a mixed population of acidophilic bacteria
    • Kimura S., Hallberg K.B., Johnson D.B. Sulfidogenesis in low pH (3.8-4.2) media by a mixed population of acidophilic bacteria. Biodegradation 2006, 17:57-65.
    • (2006) Biodegradation , vol.17 , pp. 57-65
    • Kimura, S.1    Hallberg, K.B.2    Johnson, D.B.3
  • 63
    • 0034754397 scopus 로고    scopus 로고
    • Effect of pH on the anaerobic microbial cycling of sulfur in mining-impacted freshwater lake sediments
    • Kusel K., Roth U., Trinkwalter T., Peiffer S. Effect of pH on the anaerobic microbial cycling of sulfur in mining-impacted freshwater lake sediments. Environ. Exp. Bot. 2001, 46:213-223.
    • (2001) Environ. Exp. Bot. , vol.46 , pp. 213-223
    • Kusel, K.1    Roth, U.2    Trinkwalter, T.3    Peiffer, S.4
  • 65
    • 61349202855 scopus 로고    scopus 로고
    • Metal reduction at low pH by a Desulfosporosinus species: implications for the biological treatment of acidic mine drainage
    • Senko J.M., Zhang G., McDonough J.T., Bruns M.A., Burgos W.D. Metal reduction at low pH by a Desulfosporosinus species: implications for the biological treatment of acidic mine drainage. Geomicrobiol. J. 2009, 26:71-82.
    • (2009) Geomicrobiol. J. , vol.26 , pp. 71-82
    • Senko, J.M.1    Zhang, G.2    McDonough, J.T.3    Bruns, M.A.4    Burgos, W.D.5
  • 66
    • 77951766597 scopus 로고    scopus 로고
    • Desulfosporosinus acidiphilus sp. nov.: a moderately acidophilic sulfate-reducing bacterium isolated from acid mining drainage sediments
    • Alazard D., Joseph M., Battaglia-Brunet F., Cayol J.L., Ollivier B. Desulfosporosinus acidiphilus sp. nov.: a moderately acidophilic sulfate-reducing bacterium isolated from acid mining drainage sediments. Extremophiles 2010, 14:305-312.
    • (2010) Extremophiles , vol.14 , pp. 305-312
    • Alazard, D.1    Joseph, M.2    Battaglia-Brunet, F.3    Cayol, J.L.4    Ollivier, B.5
  • 67
    • 84884956836 scopus 로고    scopus 로고
    • Enrichment and isolation of acidophilic sulfate-reducing bacteria from Tinto River sediments
    • Sánchez-Andrea I., Stams A.J., Amils R., Sanz J.L. Enrichment and isolation of acidophilic sulfate-reducing bacteria from Tinto River sediments. Environ. Microbiol. Rep. 2013, 1758-2229.
    • (2013) Environ. Microbiol. Rep. , pp. 1758-2229
    • Sánchez-Andrea, I.1    Stams, A.J.2    Amils, R.3    Sanz, J.L.4
  • 68
    • 1542301480 scopus 로고    scopus 로고
    • Simple organic electron donors support diverse sulfate-reducing communities in fluidized-bed reactors treating acidic metal- and sulfate-containing wastewater
    • Kaksonen A.H., Plumb J.J., Franzmann P.D., Puhakka J.A. Simple organic electron donors support diverse sulfate-reducing communities in fluidized-bed reactors treating acidic metal- and sulfate-containing wastewater. FEMS Microbiol. Ecol. 2004, 47:279-289.
    • (2004) FEMS Microbiol. Ecol. , vol.47 , pp. 279-289
    • Kaksonen, A.H.1    Plumb, J.J.2    Franzmann, P.D.3    Puhakka, J.A.4
  • 69
    • 84872735053 scopus 로고    scopus 로고
    • Bioremediation of acid mine drainage coupled with domestic wastewater treatment
    • Sánchez-Andrea I., Triana D., Sanz J.L. Bioremediation of acid mine drainage coupled with domestic wastewater treatment. Water Sci. Technol. 2012, 66(11):2425-2431.
    • (2012) Water Sci. Technol. , vol.66 , Issue.11 , pp. 2425-2431
    • Sánchez-Andrea, I.1    Triana, D.2    Sanz, J.L.3
  • 70
    • 79960704332 scopus 로고    scopus 로고
    • Effect of organic substrate on the microbial community structure in pilot-scale sulfate-reducing biochemical reactors treating mine drainage
    • Hiibel S.R., Pereyra L.P., Breazeal M.V.R., Reisman D.J., Reardon K.F., Pruden A. Effect of organic substrate on the microbial community structure in pilot-scale sulfate-reducing biochemical reactors treating mine drainage. Environ. Eng. Sci. 2011, 28:563-572.
    • (2011) Environ. Eng. Sci. , vol.28 , pp. 563-572
    • Hiibel, S.R.1    Pereyra, L.P.2    Breazeal, M.V.R.3    Reisman, D.J.4    Reardon, K.F.5    Pruden, A.6
  • 71
    • 33746367452 scopus 로고    scopus 로고
    • Biologically produced sulphide for purification of process streams, effluent treatment and recovery of metals in the metal and mining industry
    • Huisman J.L., Schouten G., Schultz C. Biologically produced sulphide for purification of process streams, effluent treatment and recovery of metals in the metal and mining industry. Hydrometallurgy 2006, 83:106-113.
    • (2006) Hydrometallurgy , vol.83 , pp. 106-113
    • Huisman, J.L.1    Schouten, G.2    Schultz, C.3
  • 73
    • 70349213619 scopus 로고    scopus 로고
    • Sulfate reduction at pH 5 in a high-rate membrane bioreactor: reactor performance and microbial community analyses
    • Bijmans M.F.M., Dopson M., Peeters T.W.T., Lens P.N.L., Buisman C.J.N. Sulfate reduction at pH 5 in a high-rate membrane bioreactor: reactor performance and microbial community analyses. J. Microbiol. Biotechnol. 2009, 19:698-708.
    • (2009) J. Microbiol. Biotechnol. , vol.19 , pp. 698-708
    • Bijmans, M.F.M.1    Dopson, M.2    Peeters, T.W.T.3    Lens, P.N.L.4    Buisman, C.J.N.5
  • 74
    • 70349194357 scopus 로고    scopus 로고
    • Effect of the sulfide concentration on zinc bio-precipitation in a single stage sulfidogenic bioreactor at pH 5.5
    • Bijmans M.F.M., van Helvoort P.J., Buisman C.J.N., Lens P.N.L. Effect of the sulfide concentration on zinc bio-precipitation in a single stage sulfidogenic bioreactor at pH 5.5. Sep. Purif. Technol. 2009, 69:243-248.
    • (2009) Sep. Purif. Technol. , vol.69 , pp. 243-248
    • Bijmans, M.F.M.1    van Helvoort, P.J.2    Buisman, C.J.N.3    Lens, P.N.L.4
  • 75
    • 59349117985 scopus 로고    scopus 로고
    • Selective recovery of nickel over iron from a nickel-iron solution using microbial sulfate reduction in a gas-lift bioreactor
    • Bijmans M.F.M., van Helvoort P.J., Dar S.A., Dopson M., Lens P.N.L., Buisman C.J.N. Selective recovery of nickel over iron from a nickel-iron solution using microbial sulfate reduction in a gas-lift bioreactor. Water Res. 2009, 43:853-861.
    • (2009) Water Res. , vol.43 , pp. 853-861
    • Bijmans, M.F.M.1    van Helvoort, P.J.2    Dar, S.A.3    Dopson, M.4    Lens, P.N.L.5    Buisman, C.J.N.6
  • 76
    • 59349101920 scopus 로고    scopus 로고
    • Effect of sulfide removal on sulfate reduction at pH 5 in a hydrogen fed gas-lift bioreactor
    • Bijmans M.F., Dopson M., Ennin F., Lens P.N., Buisman C.J. Effect of sulfide removal on sulfate reduction at pH 5 in a hydrogen fed gas-lift bioreactor. J. Microbiol. Biotechnol. 2008, 18:1809-1818.
    • (2008) J. Microbiol. Biotechnol. , vol.18 , pp. 1809-1818
    • Bijmans, M.F.1    Dopson, M.2    Ennin, F.3    Lens, P.N.4    Buisman, C.J.5
  • 77
    • 0345390248 scopus 로고    scopus 로고
    • Removal of hydrogen sulphide from wastewater and waste gases by biological conversion to elemental sulphur: colloidal and interfacial aspects of biologically produced sulphur particles
    • Janssen A., Lettinga G., De Keizer A. Removal of hydrogen sulphide from wastewater and waste gases by biological conversion to elemental sulphur: colloidal and interfacial aspects of biologically produced sulphur particles. Colloids Surf. A: Physicochem. Eng. Aspects 1999, 151:389-397.
    • (1999) Colloids Surf. A: Physicochem. Eng. Aspects , vol.151 , pp. 389-397
    • Janssen, A.1    Lettinga, G.2    De Keizer, A.3
  • 80
    • 31744443195 scopus 로고    scopus 로고
    • Occurrence of methanogenesis during start-up of a full-scale synthesis gas-fed reactor treating sulfate and metal-rich wastewater
    • Van Houten B.H., Roest K., Tzeneva V.A., Dijkman H., Smidt H., Stams A.J. Occurrence of methanogenesis during start-up of a full-scale synthesis gas-fed reactor treating sulfate and metal-rich wastewater. Water Res. 2006, 40:553-560.
    • (2006) Water Res. , vol.40 , pp. 553-560
    • Van Houten, B.H.1    Roest, K.2    Tzeneva, V.A.3    Dijkman, H.4    Smidt, H.5    Stams, A.J.6
  • 81
    • 83455198705 scopus 로고    scopus 로고
    • Enrichment of sulfate-reducing bacteria and resulting mineral formation in media mimicking pore water metal ion concentrations and pH conditions of acidic pit lakes
    • Meier J., Piva A., Fortin D. Enrichment of sulfate-reducing bacteria and resulting mineral formation in media mimicking pore water metal ion concentrations and pH conditions of acidic pit lakes. FEMS Microbiol. Ecol. 2012, 79:69-84.
    • (2012) FEMS Microbiol. Ecol. , vol.79 , pp. 69-84
    • Meier, J.1    Piva, A.2    Fortin, D.3
  • 82
    • 72449172856 scopus 로고    scopus 로고
    • Sulfidogenesis at low pH by acidophilic bacteria and its potential for the selective recovery of transition metals from mine waters
    • Johnson D.B., Jameson E., Rowe O., Wakeman K., Hallberg K.B. Sulfidogenesis at low pH by acidophilic bacteria and its potential for the selective recovery of transition metals from mine waters. Adv. Mater. Res. 2009, 71:693-696.
    • (2009) Adv. Mater. Res. , vol.71 , pp. 693-696
    • Johnson, D.B.1    Jameson, E.2    Rowe, O.3    Wakeman, K.4    Hallberg, K.B.5
  • 83
    • 0026080952 scopus 로고
    • Acidobacterium capsulatum gen. nov., sp. nov.: an acidophilic chemoorganotrophic bacterium containing menaquinone from acidic mineral environment
    • Kishimoto N., Kosako Y., Tano T. Acidobacterium capsulatum gen. nov., sp. nov.: an acidophilic chemoorganotrophic bacterium containing menaquinone from acidic mineral environment. Curr. Microbiol. 1991, 22:1-7.
    • (1991) Curr. Microbiol. , vol.22 , pp. 1-7
    • Kishimoto, N.1    Kosako, Y.2    Tano, T.3
  • 84
    • 0023228536 scopus 로고
    • The relationship between chemiosmotic parameters and sensitivity to anions and organic acids in the acidophile Thiobacillus ferrooxidans
    • Alexander B., Leach S., Ingledew W.J. The relationship between chemiosmotic parameters and sensitivity to anions and organic acids in the acidophile Thiobacillus ferrooxidans. J. Gen. Microbiol. 1987, 133:1171-1179.
    • (1987) J. Gen. Microbiol. , vol.133 , pp. 1171-1179
    • Alexander, B.1    Leach, S.2    Ingledew, W.J.3
  • 85
    • 0022570010 scopus 로고
    • Acidiphilium angustum sp. nov., Acidiphilium facilis sp. nov., and Acidiphilium rubrum sp. nov.: acidophilic heterotrophic bacteria isolated from acidic coal mine drainage
    • Wichlacz P.L., Unz R.F., Langworthy T.A. Acidiphilium angustum sp. nov., Acidiphilium facilis sp. nov., and Acidiphilium rubrum sp. nov.: acidophilic heterotrophic bacteria isolated from acidic coal mine drainage. Int. J. Syst. Bacteriol. 1986, 36:197-201.
    • (1986) Int. J. Syst. Bacteriol. , vol.36 , pp. 197-201
    • Wichlacz, P.L.1    Unz, R.F.2    Langworthy, T.A.3
  • 86
    • 0025215258 scopus 로고
    • Influence of produced acetic acid on growth of sulfate reducing bacteria
    • Reis M., Lemos P., Almeida J., Carrondo M. Influence of produced acetic acid on growth of sulfate reducing bacteria. Biotechnol. Lett. 1990, 12:145-148.
    • (1990) Biotechnol. Lett. , vol.12 , pp. 145-148
    • Reis, M.1    Lemos, P.2    Almeida, J.3    Carrondo, M.4
  • 87
    • 33748450909 scopus 로고    scopus 로고
    • Exposure to sulfide causes populations shifts in sulfate-reducing consortia
    • Icgen B., Harrison S. Exposure to sulfide causes populations shifts in sulfate-reducing consortia. Res. Microbiol. 2006, 157:784-791.
    • (2006) Res. Microbiol. , vol.157 , pp. 784-791
    • Icgen, B.1    Harrison, S.2
  • 88
    • 0028851196 scopus 로고
    • Anaerobic treatment of sulphate-containing waste streams
    • Colleran E., Finnegan S., Lens P. Anaerobic treatment of sulphate-containing waste streams. Antonie Van Leeuwenhoek 1995, 67:29-46.
    • (1995) Antonie Van Leeuwenhoek , vol.67 , pp. 29-46
    • Colleran, E.1    Finnegan, S.2    Lens, P.3
  • 89
    • 33746344320 scopus 로고    scopus 로고
    • Product inhibition by sulphide species on biological sulphate reduction for the treatment of acid mine drainage
    • Moosa S., Harrison S. Product inhibition by sulphide species on biological sulphate reduction for the treatment of acid mine drainage. Hydrometallurgy 2006, 83:214-222.
    • (2006) Hydrometallurgy , vol.83 , pp. 214-222
    • Moosa, S.1    Harrison, S.2
  • 90
    • 84980187332 scopus 로고
    • Inhibition of bacterial sulphate-reduction in presence of short chain fatty acids
    • Ghose T.K., Wikén T. Inhibition of bacterial sulphate-reduction in presence of short chain fatty acids. Physiol. Plant. 1955, 8:116-135.
    • (1955) Physiol. Plant. , vol.8 , pp. 116-135
    • Ghose, T.K.1    Wikén, T.2
  • 92
    • 85012856983 scopus 로고    scopus 로고
    • Sulfate reduction for inorganic waste and process water treatment
    • Academic Press, Burlington, M. Moo-Young (Ed.)
    • Bijmans M.F.M., Buisman C.J.N., Meulepas R.J.W., Lens P.N.L. Sulfate reduction for inorganic waste and process water treatment. Comprehensive Biotechnology 2011, 435-446. Academic Press, Burlington. second ed. M. Moo-Young (Ed.).
    • (2011) Comprehensive Biotechnology , pp. 435-446
    • Bijmans, M.F.M.1    Buisman, C.J.N.2    Meulepas, R.J.W.3    Lens, P.N.L.4
  • 93
    • 0033399784 scopus 로고    scopus 로고
    • Crystallization and precipitation
    • Mersmann A. Crystallization and precipitation. Chem. Eng. Process. 1999, 38:345-353.
    • (1999) Chem. Eng. Process. , vol.38 , pp. 345-353
    • Mersmann, A.1
  • 95
    • 0037271608 scopus 로고    scopus 로고
    • Selective precipitation of heavy metals as controlled by a sulfide-selective electrode
    • Veeken A., De Vries S., Van der Mark A., Rulkens W. Selective precipitation of heavy metals as controlled by a sulfide-selective electrode. Sep. Sci. Technol. 2003, 38:1-19.
    • (2003) Sep. Sci. Technol. , vol.38 , pp. 1-19
    • Veeken, A.1    De Vries, S.2    Van der Mark, A.3    Rulkens, W.4
  • 96
    • 0842291638 scopus 로고    scopus 로고
    • A novel lineage of sulfate-reducing microorganisms: Thermodesulfobiaceae fam. nov., Thermodesulfobium narugense, gen. nov., sp. nov., a new thermophilic isolate from a hot spring
    • Mori K., Kim H., Kakegawa T., Hanada S. A novel lineage of sulfate-reducing microorganisms: Thermodesulfobiaceae fam. nov., Thermodesulfobium narugense, gen. nov., sp. nov., a new thermophilic isolate from a hot spring. Extremophiles 2003, 7:283-290.
    • (2003) Extremophiles , vol.7 , pp. 283-290
    • Mori, K.1    Kim, H.2    Kakegawa, T.3    Hanada, S.4
  • 98
    • 84874026714 scopus 로고    scopus 로고
    • Desulfosporosinus burensis sp. nov., a spore-forming, mesophilic, sulfate-reducing bacterium isolated from a deep clay environment
    • Mayeux B., Fardeau M., Bartoli-Joseph M., Casalot L., Vinsot A., Labat M. Desulfosporosinus burensis sp. nov., a spore-forming, mesophilic, sulfate-reducing bacterium isolated from a deep clay environment. Int. J. Syst. Evol. Microbiol. 2013, 63:593-598.
    • (2013) Int. J. Syst. Evol. Microbiol. , vol.63 , pp. 593-598
    • Mayeux, B.1    Fardeau, M.2    Bartoli-Joseph, M.3    Casalot, L.4    Vinsot, A.5    Labat, M.6
  • 99
  • 100
    • 0037194076 scopus 로고    scopus 로고
    • A kinetic study on anaerobic reduction of sulphate. Part I: Effect of sulphate concentration
    • Moosa S., Nemati M., Harrison S.T.L. A kinetic study on anaerobic reduction of sulphate. Part I: Effect of sulphate concentration. Chem. Eng. Sci. 2002, 57:2773-2780.
    • (2002) Chem. Eng. Sci. , vol.57 , pp. 2773-2780
    • Moosa, S.1    Nemati, M.2    Harrison, S.T.L.3
  • 101
    • 0034606961 scopus 로고    scopus 로고
    • Thermophilic sulfate reduction and methanogenesis with methanol in a high rate anaerobic reactor
    • Weijma J., Stams A.J., Pol H., Look W., Lettinga G. Thermophilic sulfate reduction and methanogenesis with methanol in a high rate anaerobic reactor. Biotechnol. Bioeng. 2000, 67:354-363.
    • (2000) Biotechnol. Bioeng. , vol.67 , pp. 354-363
    • Weijma, J.1    Stams, A.J.2    Pol, H.3    Look, W.4    Lettinga, G.5
  • 103
    • 0035241852 scopus 로고    scopus 로고
    • Verification of anaerobic biofilm model for phenol degradation with sulfate reduction
    • Lin Y.H., Lee K.K. Verification of anaerobic biofilm model for phenol degradation with sulfate reduction. J. Environ. Eng. 2001, 127:119-125.
    • (2001) J. Environ. Eng. , vol.127 , pp. 119-125
    • Lin, Y.H.1    Lee, K.K.2
  • 104
    • 0037086066 scopus 로고    scopus 로고
    • Treatment of mine drainage using permeable reactive barriers: column experiments
    • Waybrant K., Ptacek C., Blowes D. Treatment of mine drainage using permeable reactive barriers: column experiments. Environ. Sci. Technol. 2002, 36:1349-1356.
    • (2002) Environ. Sci. Technol. , vol.36 , pp. 1349-1356
    • Waybrant, K.1    Ptacek, C.2    Blowes, D.3
  • 105
    • 43049137272 scopus 로고    scopus 로고
    • High rate sulfate reduction at pH 6 in a pH-auxostat submerged membrane bioreactor fed with formate
    • Bijmans M.F.M., Peeters T.W.T., Lens P.N.L., Buisman C.J.N. High rate sulfate reduction at pH 6 in a pH-auxostat submerged membrane bioreactor fed with formate. Water Res. 2008, 42:2439-2448.
    • (2008) Water Res. , vol.42 , pp. 2439-2448
    • Bijmans, M.F.M.1    Peeters, T.W.T.2    Lens, P.N.L.3    Buisman, C.J.N.4
  • 106
    • 0038049889 scopus 로고    scopus 로고
    • Removal of sulfate and heavy metals by sulfate reducing bacteria in short-term bench scale upflow anaerobic packed bed reactor runs
    • Jong T., Parry D. Removal of sulfate and heavy metals by sulfate reducing bacteria in short-term bench scale upflow anaerobic packed bed reactor runs. Water Res. 2003, 37:3379-3389.
    • (2003) Water Res. , vol.37 , pp. 3379-3389
    • Jong, T.1    Parry, D.2
  • 107
    • 33745744077 scopus 로고    scopus 로고
    • Microbial sulfate reduction under sequentially acidic conditions in an upflow anaerobic packed bed bioreactor
    • Jong T., Parry D.L. Microbial sulfate reduction under sequentially acidic conditions in an upflow anaerobic packed bed bioreactor. Water Res. 2006, 40:2561-2571.
    • (2006) Water Res. , vol.40 , pp. 2561-2571
    • Jong, T.1    Parry, D.L.2
  • 108
    • 84877066908 scopus 로고    scopus 로고
    • Consortium diversity of a sulfate-reducing biofilm developed at acidic pH influent conditions in a down-flow fluidized bed reactor
    • Montoya L., Celis L.B., Gallegos-García M., Razo-Flores E., Alpuche-Solís Á.G. Consortium diversity of a sulfate-reducing biofilm developed at acidic pH influent conditions in a down-flow fluidized bed reactor. Eng. Life Sci. 2013, 13:302-311.
    • (2013) Eng. Life Sci. , vol.13 , pp. 302-311
    • Montoya, L.1    Celis, L.B.2    Gallegos-García, M.3    Razo-Flores, E.4    Alpuche-Solís, A.G.5
  • 109
    • 1542285599 scopus 로고    scopus 로고
    • Effects of hydraulic retention time and sulfide toxicity on ethanol and acetate oxidation in sulfate-reducing metal-precipitating fluidized-bed reactor
    • Kaksonen A.H., Franzmann P.D., Puhakka J.A. Effects of hydraulic retention time and sulfide toxicity on ethanol and acetate oxidation in sulfate-reducing metal-precipitating fluidized-bed reactor. Biotechnol. Bioeng. 2004, 86:332-343.
    • (2004) Biotechnol. Bioeng. , vol.86 , pp. 332-343
    • Kaksonen, A.H.1    Franzmann, P.D.2    Puhakka, J.A.3
  • 110
    • 0035911669 scopus 로고    scopus 로고
    • Treatment by sulfate-reducing bacteria of Chessy acid-mine drainage and metals recovery
    • Foucher S., Battaglia-Brunet F., Ignatiadis I., Morin D. Treatment by sulfate-reducing bacteria of Chessy acid-mine drainage and metals recovery. Chem. Eng. Sci. 2001, 56:1639-1645.
    • (2001) Chem. Eng. Sci. , vol.56 , pp. 1639-1645
    • Foucher, S.1    Battaglia-Brunet, F.2    Ignatiadis, I.3    Morin, D.4
  • 111
    • 0037210002 scopus 로고    scopus 로고
    • Optimization of metal sulphide precipitation in fluidized-bed treatment of acidic wastewater
    • Kaksonen A., Riekkola-Vanhanen M.L., Puhakka J. Optimization of metal sulphide precipitation in fluidized-bed treatment of acidic wastewater. Water Res. 2003, 37:255-266.
    • (2003) Water Res. , vol.37 , pp. 255-266
    • Kaksonen, A.1    Riekkola-Vanhanen, M.L.2    Puhakka, J.3
  • 112
    • 33846355962 scopus 로고    scopus 로고
    • The effect of inoculum on the performance of sulfate-reducing columns treating heavy metal contaminated water
    • Pruden A., Messner N., Pereyra L., Hanson R., Hiibel S., Reardon K. The effect of inoculum on the performance of sulfate-reducing columns treating heavy metal contaminated water. Water Res. 2007, 41:904-914.
    • (2007) Water Res. , vol.41 , pp. 904-914
    • Pruden, A.1    Messner, N.2    Pereyra, L.3    Hanson, R.4    Hiibel, S.5    Reardon, K.6
  • 113
  • 114
    • 84866016980 scopus 로고    scopus 로고
    • Effect of bioaugmentation and biostimulation on sulfate-reducing column startup captured by functional gene profiling
    • Pereyra L.P., Hiibel S.R., Perrault E.M., Reardon K.F., Pruden A. Effect of bioaugmentation and biostimulation on sulfate-reducing column startup captured by functional gene profiling. FEMS Microbiol. Ecol. 2012, 82(1):135-147.
    • (2012) FEMS Microbiol. Ecol. , vol.82 , Issue.1 , pp. 135-147
    • Pereyra, L.P.1    Hiibel, S.R.2    Perrault, E.M.3    Reardon, K.F.4    Pruden, A.5
  • 115
    • 77957997747 scopus 로고    scopus 로고
    • Influence of the microbial community in the treatment of acidic iron-rich water in aerobic wetland mesocosms
    • Weber K.P., Werker A., Gehder M., Senger T., Legge R.L. Influence of the microbial community in the treatment of acidic iron-rich water in aerobic wetland mesocosms. Biorem. J. 2010, 14:28-37.
    • (2010) Biorem. J. , vol.14 , pp. 28-37
    • Weber, K.P.1    Werker, A.2    Gehder, M.3    Senger, T.4    Legge, R.L.5
  • 116
    • 0028378648 scopus 로고
    • The biological treatment of acid mine drainage under continuous flow conditions in a reactor
    • Lyew D., Knowles R., Sheppard J. The biological treatment of acid mine drainage under continuous flow conditions in a reactor. Process Saf. Environ. Prot. 1994, 72:42-47.
    • (1994) Process Saf. Environ. Prot. , vol.72 , pp. 42-47
    • Lyew, D.1    Knowles, R.2    Sheppard, J.3
  • 118
    • 3042704580 scopus 로고    scopus 로고
    • Sulfate-reducing bacteria-dominated biofilms that precipitate ZnS in a subsurface circumneutral-pH mine drainage system
    • Labrenz M., Banfield J. Sulfate-reducing bacteria-dominated biofilms that precipitate ZnS in a subsurface circumneutral-pH mine drainage system. Microb. Ecol. 2004, 47:205-217.
    • (2004) Microb. Ecol. , vol.47 , pp. 205-217
    • Labrenz, M.1    Banfield, J.2
  • 119
    • 12944298784 scopus 로고    scopus 로고
    • Microbiology of a wetland ecosystem constructed to remediate mine drainage from a heavy metal mine
    • Hallberg K.B., Johnson D.B. Microbiology of a wetland ecosystem constructed to remediate mine drainage from a heavy metal mine. Sci. Total Environ. 2005, 338:53-66.
    • (2005) Sci. Total Environ. , vol.338 , pp. 53-66
    • Hallberg, K.B.1    Johnson, D.B.2
  • 120
    • 11944252111 scopus 로고    scopus 로고
    • Molecular microbial ecology of lignocellulose mobilisation as a carbon source in mine drainage wastewater treatment
    • Clarke A.M., Kirby R., Rose P.D. Molecular microbial ecology of lignocellulose mobilisation as a carbon source in mine drainage wastewater treatment. Water SA 2007, 30:558-661.
    • (2007) Water SA , vol.30 , pp. 558-661
    • Clarke, A.M.1    Kirby, R.2    Rose, P.D.3
  • 124
  • 125
    • 33746388900 scopus 로고    scopus 로고
    • Microbial populations identified by fluorescence in situ hybridization in a constructed wetland treating acid coal mine drainage
    • Nicomrat D., Dick W.A., Tuovinen O.H. Microbial populations identified by fluorescence in situ hybridization in a constructed wetland treating acid coal mine drainage. J. Environ. Qual. 2006, 35:1329-1337.
    • (2006) J. Environ. Qual. , vol.35 , pp. 1329-1337
    • Nicomrat, D.1    Dick, W.A.2    Tuovinen, O.H.3
  • 126
    • 32244439191 scopus 로고    scopus 로고
    • Assessment of the microbial community in a constructed wetland that receives acid coal mine drainage
    • Nicomrat D., Dick W.A., Tuovinen O.H. Assessment of the microbial community in a constructed wetland that receives acid coal mine drainage. Microb. Ecol. 2006, 51:83-89.
    • (2006) Microb. Ecol. , vol.51 , pp. 83-89
    • Nicomrat, D.1    Dick, W.A.2    Tuovinen, O.H.3
  • 127
    • 64749100457 scopus 로고    scopus 로고
    • Investigation and optimization of a passively operated compost-based system for remediation of acidic, highly iron- and sulfate-rich industrial waste water
    • Dann A.L., Cooper R.S., Bowman J.P. Investigation and optimization of a passively operated compost-based system for remediation of acidic, highly iron- and sulfate-rich industrial waste water. Water Res. 2009, 43:2302-2316.
    • (2009) Water Res. , vol.43 , pp. 2302-2316
    • Dann, A.L.1    Cooper, R.S.2    Bowman, J.P.3
  • 128
    • 77955652776 scopus 로고    scopus 로고
    • Performance of a sulfidogenic bioreactor and bacterial community shifts under different alkalinity levels
    • Zhao Y., Li X., Wang J., Bai J., Tian W. Performance of a sulfidogenic bioreactor and bacterial community shifts under different alkalinity levels. Bioresour. Technol. 2010, 101:9190-9196.
    • (2010) Bioresour. Technol. , vol.101 , pp. 9190-9196
    • Zhao, Y.1    Li, X.2    Wang, J.3    Bai, J.4    Tian, W.5
  • 129
    • 77954714479 scopus 로고    scopus 로고
    • Diversity of dissimilatory sulfite reductase genes (dsrAB) in a salt marsh impacted by long-term acid mine drainage
    • Moreau J.W., Zierenberg R.A., Banfield J.F. Diversity of dissimilatory sulfite reductase genes (dsrAB) in a salt marsh impacted by long-term acid mine drainage. Appl. Environ. Microbiol. 2010, 76:4819-4828.
    • (2010) Appl. Environ. Microbiol. , vol.76 , pp. 4819-4828
    • Moreau, J.W.1    Zierenberg, R.A.2    Banfield, J.F.3
  • 130
    • 0037447834 scopus 로고    scopus 로고
    • Microbial communities in acid mine drainage
    • Baker B.J., Banfield J.F. Microbial communities in acid mine drainage. FEMS Microbiol. Ecol. 2003, 44:139-152.
    • (2003) FEMS Microbiol. Ecol. , vol.44 , pp. 139-152
    • Baker, B.J.1    Banfield, J.F.2
  • 131
    • 0033831747 scopus 로고    scopus 로고
    • Phylogeny of microorganisms populating a thick, subaerial, predominantly lithotrophic biofilm at an extreme acid mine drainage site
    • Bond P.L., Smriga S.P., Banfield J.F. Phylogeny of microorganisms populating a thick, subaerial, predominantly lithotrophic biofilm at an extreme acid mine drainage site. Appl. Environ. Microbiol. 2000, 66:3842-3849.
    • (2000) Appl. Environ. Microbiol. , vol.66 , pp. 3842-3849
    • Bond, P.L.1    Smriga, S.P.2    Banfield, J.F.3
  • 133
    • 44449133775 scopus 로고    scopus 로고
    • Virus population dynamics and acquired virus resistance in natural microbial communities
    • Andersson A.F., Banfield J.F. Virus population dynamics and acquired virus resistance in natural microbial communities. Science 2008, 320:1047-1050.
    • (2008) Science , vol.320 , pp. 1047-1050
    • Andersson, A.F.1    Banfield, J.F.2
  • 134
    • 80052719172 scopus 로고    scopus 로고
    • Microbial diversity in anaerobic sediments at Rio Tinto, a naturally acidic environment with a high heavy metal content
    • Sánchez-Andrea I., Rodriguez N., Amils R., Sanz J.L. Microbial diversity in anaerobic sediments at Rio Tinto, a naturally acidic environment with a high heavy metal content. Appl. Environ. Microbiol. 2011, 77:6085-6093.
    • (2011) Appl. Environ. Microbiol. , vol.77 , pp. 6085-6093
    • Sánchez-Andrea, I.1    Rodriguez, N.2    Amils, R.3    Sanz, J.L.4
  • 135
    • 84864081388 scopus 로고    scopus 로고
    • Quantification of Tinto River sediment microbial communities: the importance of sulfate-reducing bacteria and their role in attenuating acid mine drainage
    • Sánchez-Andrea I., Knittel K., Amann R., Amils R., Sanz J.L. Quantification of Tinto River sediment microbial communities: the importance of sulfate-reducing bacteria and their role in attenuating acid mine drainage. Appl. Environ. Microbiol. 2012, 78(13):4638-4645.
    • (2012) Appl. Environ. Microbiol. , vol.78 , Issue.13 , pp. 4638-4645
    • Sánchez-Andrea, I.1    Knittel, K.2    Amann, R.3    Amils, R.4    Sanz, J.L.5
  • 136
    • 84867219630 scopus 로고    scopus 로고
    • Biodiversity, metabolism and applications of acidophilic sulfur-metabolizing microorganisms
    • Dopson M., Johnson D.B. Biodiversity, metabolism and applications of acidophilic sulfur-metabolizing microorganisms. Environ. Microbiol. 2012, 14(10):2620-2631.
    • (2012) Environ. Microbiol. , vol.14 , Issue.10 , pp. 2620-2631
    • Dopson, M.1    Johnson, D.B.2
  • 138
    • 0036275064 scopus 로고    scopus 로고
    • Species diversity improves the efficiency of mercury-reducing biofilms under changing environmental conditions
    • von Canstein H., Kelly S., Li Y., Wagner-Döbler I. Species diversity improves the efficiency of mercury-reducing biofilms under changing environmental conditions. Appl. Environ. Microbiol. 2002, 68:2829-2837.
    • (2002) Appl. Environ. Microbiol. , vol.68 , pp. 2829-2837
    • von Canstein, H.1    Kelly, S.2    Li, Y.3    Wagner-Döbler, I.4
  • 140
    • 27544516368 scopus 로고    scopus 로고
    • Microbial community activities during establishment, performance, and decline of bench-scale passive treatment systems for mine drainage
    • Logan M.V., Reardon K.F., Figueroa L.A., McLain J.E., Ahmann D.M. Microbial community activities during establishment, performance, and decline of bench-scale passive treatment systems for mine drainage. Water Res. 2005, 39:4537-4551.
    • (2005) Water Res. , vol.39 , pp. 4537-4551
    • Logan, M.V.1    Reardon, K.F.2    Figueroa, L.A.3    McLain, J.E.4    Ahmann, D.M.5
  • 144
    • 48249143223 scopus 로고    scopus 로고
    • A sulfate-reducing bacterium with unusual growing capacity in moderately acidic conditions
    • Rampinelli L., Azevedo R., Teixeira M., Guerra-Sá R., Leão V. A sulfate-reducing bacterium with unusual growing capacity in moderately acidic conditions. Biodegradation 2008, 19:613-619.
    • (2008) Biodegradation , vol.19 , pp. 613-619
    • Rampinelli, L.1    Azevedo, R.2    Teixeira, M.3    Guerra-Sá, R.4    Leão, V.5
  • 145
    • 0032947993 scopus 로고    scopus 로고
    • Desulfobacca acetoxidans gen. nov., sp. nov., a novel acetate-degrading sulfate reducer isolated from sulfidogenic granular sludge
    • Elferink S.J.O., Akkermans-van Vliet W., Bogte J.J., Stams A.J. Desulfobacca acetoxidans gen. nov., sp. nov., a novel acetate-degrading sulfate reducer isolated from sulfidogenic granular sludge. Int. J. Syst. Bacteriol. 1999, 49:345-350.
    • (1999) Int. J. Syst. Bacteriol. , vol.49 , pp. 345-350
    • Elferink, S.J.O.1    Akkermans-van Vliet, W.2    Bogte, J.J.3    Stams, A.J.4
  • 146
    • 0029125546 scopus 로고
    • Desulforhabdus amnigenus gen. nov. sp. nov., a sulfate reducer isolated from anaerobic granular sludge
    • Oude Elferink S.J., Maas R.N., Harmsen H.J., Stams A.J. Desulforhabdus amnigenus gen. nov. sp. nov., a sulfate reducer isolated from anaerobic granular sludge. Arch. Microbiol. 1995, 164:119-124.
    • (1995) Arch. Microbiol. , vol.164 , pp. 119-124
    • Oude Elferink, S.J.1    Maas, R.N.2    Harmsen, H.J.3    Stams, A.J.4
  • 149
    • 70450240701 scopus 로고    scopus 로고
    • Desulfosporosinus youngiae sp. nov., a spore-forming, sulfate-reducing bacterium isolated from a constructed wetland treating acid mine drainage
    • Lee Y.J., Romanek C.S., Wiegel J. Desulfosporosinus youngiae sp. nov., a spore-forming, sulfate-reducing bacterium isolated from a constructed wetland treating acid mine drainage. Int. J. Syst. Evol. Microbiol. 2009, 59:2743-2746.
    • (2009) Int. J. Syst. Evol. Microbiol. , vol.59 , pp. 2743-2746
    • Lee, Y.J.1    Romanek, C.S.2    Wiegel, J.3
  • 150
    • 77957777946 scopus 로고    scopus 로고
    • New perspectives in acid mine drainage microbiology
    • Hallberg K. New perspectives in acid mine drainage microbiology. Hydrometallurgy 2010, 104:448-453.
    • (2010) Hydrometallurgy , vol.104 , pp. 448-453
    • Hallberg, K.1
  • 151
    • 34250196460 scopus 로고    scopus 로고
    • Microbial communities and geochemical dynamics in an extremely acidic, metal-rich stream at an abandoned sulfide mine (Huelva, Spain) underpinned by two functional primary production systems
    • Rowe O.F., Sánchez-España J., Hallberg K.B., Johnson D.B. Microbial communities and geochemical dynamics in an extremely acidic, metal-rich stream at an abandoned sulfide mine (Huelva, Spain) underpinned by two functional primary production systems. Environ. Microbiol. 2007, 9:1761-1771.
    • (2007) Environ. Microbiol. , vol.9 , pp. 1761-1771
    • Rowe, O.F.1    Sánchez-España, J.2    Hallberg, K.B.3    Johnson, D.B.4
  • 153
    • 0031798964 scopus 로고    scopus 로고
    • Desulfurella kamchatkensis sp. nov. and Desulfurella propionica sp. nov., new sulfur-respiring thermophilic bacteria from Kamchatka thermal environments
    • Miroshnichenko M.L., Rainey F.A., Hippe H., Chernyh N.A., Kostrikina N.A., Bonch-Osmolovskaya E.A. Desulfurella kamchatkensis sp. nov. and Desulfurella propionica sp. nov., new sulfur-respiring thermophilic bacteria from Kamchatka thermal environments. Int. J. Syst. Bacteriol. 1998, 48:475-479.
    • (1998) Int. J. Syst. Bacteriol. , vol.48 , pp. 475-479
    • Miroshnichenko, M.L.1    Rainey, F.A.2    Hippe, H.3    Chernyh, N.A.4    Kostrikina, N.A.5    Bonch-Osmolovskaya, E.A.6
  • 154
    • 0025169910 scopus 로고
    • Desulfurella acetivorans gen. nov. and sp. nov. - a new thermophilic sulfur-reducing eubacterium
    • Bonch-Osmolovskaya E., Sokolova T., Kostrikina N., Zavarzin G. Desulfurella acetivorans gen. nov. and sp. nov. - a new thermophilic sulfur-reducing eubacterium. Arch. Microbiol. 1990, 153:151-155.
    • (1990) Arch. Microbiol. , vol.153 , pp. 151-155
    • Bonch-Osmolovskaya, E.1    Sokolova, T.2    Kostrikina, N.3    Zavarzin, G.4
  • 156
    • 80051928133 scopus 로고    scopus 로고
    • Methanogenesis in the sediments of Rio Tinto, an extreme acidic river
    • Sanz J.L., Rodríguez N., Díaz E.E., Amils R. Methanogenesis in the sediments of Rio Tinto, an extreme acidic river. Environ. Microbiol. 2011, 13:2336-2341.
    • (2011) Environ. Microbiol. , vol.13 , pp. 2336-2341
    • Sanz, J.L.1    Rodríguez, N.2    Díaz, E.E.3    Amils, R.4
  • 157
    • 84868340620 scopus 로고    scopus 로고
    • Screening of anaerobic activities in sediments of an acidic environment: Tinto River
    • Sánchez-Andrea I., Rojas P., Amils R., Sanz J.L. Screening of anaerobic activities in sediments of an acidic environment: Tinto River. Extremophiles 2012, 16:829-839.
    • (2012) Extremophiles , vol.16 , pp. 829-839
    • Sánchez-Andrea, I.1    Rojas, P.2    Amils, R.3    Sanz, J.L.4
  • 158
    • 0001086975 scopus 로고
    • Methanogenic bacteria, including an acid-tolerant strain, from peatlands
    • Williams R.T., Crawford R.L. Methanogenic bacteria, including an acid-tolerant strain, from peatlands. Appl. Environ. Microbiol. 1985, 50:1542-1544.
    • (1985) Appl. Environ. Microbiol. , vol.50 , pp. 1542-1544
    • Williams, R.T.1    Crawford, R.L.2
  • 159
    • 7044269599 scopus 로고    scopus 로고
    • 2 in the presence of rifampicin, or by low concentrations of acetate
    • 2 in the presence of rifampicin, or by low concentrations of acetate. Geomicrobiol. J. 2004, 21:433-443.
    • (2004) Geomicrobiol. J. , vol.21 , pp. 433-443
    • Bräuer, S.L.1    Yavitt, J.B.2    Zinder, S.H.3
  • 160
    • 0023119481 scopus 로고
    • Ecophysiological adaptations of anaerobic bacteria to low pH: analysis of anaerobic digestion in acidic bog sediments
    • Goodwin S., Zeikus J.G. Ecophysiological adaptations of anaerobic bacteria to low pH: analysis of anaerobic digestion in acidic bog sediments. Appl. Environ. Microbiol. 1987, 53:57-64.
    • (1987) Appl. Environ. Microbiol. , vol.53 , pp. 57-64
    • Goodwin, S.1    Zeikus, J.G.2
  • 161
    • 0027868335 scopus 로고
    • Methane production and consumption in temperate and subarctic peat soils: response to temperature and pH
    • Dunfield P., Dumont R., Moore T.R. Methane production and consumption in temperate and subarctic peat soils: response to temperature and pH. Soil Biol. Biochem. 1993, 25:321-326.
    • (1993) Soil Biol. Biochem. , vol.25 , pp. 321-326
    • Dunfield, P.1    Dumont, R.2    Moore, T.R.3
  • 163
    • 77950023781 scopus 로고    scopus 로고
    • Anomalous energy yields in thermodynamic calculations: importance of accounting for pH-dependent organic acid speciation
    • Dolfing J., Xu A., Head I.M. Anomalous energy yields in thermodynamic calculations: importance of accounting for pH-dependent organic acid speciation. ISME J. 2010, 4:463-464.
    • (2010) ISME J. , vol.4 , pp. 463-464
    • Dolfing, J.1    Xu, A.2    Head, I.M.3
  • 164
    • 0034015354 scopus 로고    scopus 로고
    • Biofilm, city of microbes
    • Watnick P., Kolter R. Biofilm, city of microbes. J. Bacteriol. 2000, 182:2675-2679.
    • (2000) J. Bacteriol. , vol.182 , pp. 2675-2679
    • Watnick, P.1    Kolter, R.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.