메뉴 건너뛰기




Volumn 60, Issue , 2014, Pages 13-29

Wiener filtering based speech enhancement with Weighted Denoising Auto-encoder and noise classification

Author keywords

Gaussian mixture model; Noise classification; SNR estimation; Speech enhancement; Weighted Denoising Auto encoder; Wiener filter

Indexed keywords

ADAPTIVE FILTERING; LEARNING SYSTEMS; NOISE ABATEMENT; POWER SPECTRUM; SPEECH ENHANCEMENT; SPEECH RECOGNITION;

EID: 84896537574     PISSN: 01676393     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.specom.2014.02.001     Document Type: Article
Times cited : (160)

References (25)
  • 2
    • 69349090197 scopus 로고    scopus 로고
    • Learning deep architectures for AI
    • Y. Bengio Learning deep architectures for AI Found. Trends Mach. Learn. 2 1 2009 1 127
    • (2009) Found. Trends Mach. Learn. , vol.2 , Issue.1 , pp. 1-127
    • Bengio, Y.1
  • 3
    • 0018455310 scopus 로고
    • Suppression of acoustic noise in speech using spectral subtraction
    • S.F. Boll Suppression of acoustic noise in speech using spectral subtraction IEEE Trans. Acoust. Speech Signal Process., ASSP 27 2 1979 113 120
    • (1979) IEEE Trans. Acoust. Speech Signal Process., ASSP , vol.27 , Issue.2 , pp. 113-120
    • Boll, S.F.1
  • 5
    • 0036226165 scopus 로고    scopus 로고
    • Noise estimation by minima controlled recursive averaging for robust speech enhancement
    • I. Cohen, and B. Berdugo Noise estimation by minima controlled recursive averaging for robust speech enhancement IEEE Signal Process. Lett. 9 1 2002 12 15
    • (2002) IEEE Signal Process. Lett. , vol.9 , Issue.1 , pp. 12-15
    • Cohen, I.1    Berdugo, B.2
  • 6
    • 84055222005 scopus 로고    scopus 로고
    • Context-dependent pre-trained deep neural networks for large-vocabulary speech recognition
    • G.E. Dahl, D. Yu, L. Deng, and A. Acero Context-dependent pre-trained deep neural networks for large-vocabulary speech recognition IEEE Trans. Audio Speech Lang. Process. 20 1 2012 30 42
    • (2012) IEEE Trans. Audio Speech Lang. Process. , vol.20 , Issue.1 , pp. 30-42
    • Dahl, G.E.1    Yu, D.2    Deng, L.3    Acero, A.4
  • 7
    • 0029307534 scopus 로고
    • De-noising by soft-thresholding
    • D.L. Donoho De-noising by soft-thresholding IEEE Trans. Inf. Theory 41 3 1995 613 627
    • (1995) IEEE Trans. Inf. Theory , vol.41 , Issue.3 , pp. 613-627
    • Donoho, D.L.1
  • 8
    • 0021645331 scopus 로고
    • Speech enhancement using a minimum mean-square error short-time spectral amplitude estimator
    • Y. Ephraim, and D. Malah Speech enhancement using a minimum mean-square error short-time spectral amplitude estimator IEEE Trans. Acoust. Speech Signal Process., ASSP 32 6 1984 1109 1121
    • (1984) IEEE Trans. Acoust. Speech Signal Process., ASSP , vol.32 , Issue.6 , pp. 1109-1121
    • Ephraim, Y.1    Malah, D.2
  • 10
    • 33746600649 scopus 로고    scopus 로고
    • Reducing the dimensionality of data with neural networks
    • G.E. Hinton, and R.R. Salakhutdinov Reducing the dimensionality of data with neural networks Science 313 5786 2006 504 507
    • (2006) Science , vol.313 , Issue.5786 , pp. 504-507
    • Hinton, G.E.1    Salakhutdinov, R.R.2
  • 11
    • 79952360668 scopus 로고    scopus 로고
    • ITU-T P.862, perceptual evaluation of speech quality (PESQ): An objective method for end-to-end speech quality assessment of narrow-band telephone networks and speech codecs
    • ITU-T, 2001 Union (ITU), series P
    • ITU-T, 2001. ITU-T P.862, perceptual evaluation of speech quality (PESQ): an objective method for end-to-end speech quality assessment of narrow-band telephone networks and speech codecs. Int. Telecommun. Union (ITU), series P.
    • Int. Telecommun
  • 13
    • 0023963510 scopus 로고
    • Transform coding of audio signals using perceptual noise criteria
    • J.D. Johnston Transform coding of audio signals using perceptual noise criteria IEEE J. Sel. Areas Commun. 6 2 1988 314 323
    • (1988) IEEE J. Sel. Areas Commun. , vol.6 , Issue.2 , pp. 314-323
    • Johnston, J.D.1
  • 14
    • 0032203257 scopus 로고    scopus 로고
    • Gradient-based learning applied to document recognition
    • Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner Gradient-based learning applied to document recognition Proc. IEEE 86 11 1998 2278 2323
    • (1998) Proc. IEEE , vol.86 , Issue.11 , pp. 2278-2323
    • Lecun, Y.1    Bottou, L.2    Bengio, Y.3    Haffner, P.4
  • 15
    • 0018642851 scopus 로고
    • Enhancement and bandwidth compression of noisy speech
    • J.S. Lim, and A.V. Oppenheim Enhancement and bandwidth compression of noisy speech Proc. IEEE 67 12 1979 1586 1604
    • (1979) Proc. IEEE , vol.67 , Issue.12 , pp. 1586-1604
    • Lim, J.S.1    Oppenheim, A.V.2
  • 19
    • 0029209272 scopus 로고
    • Robust text-independent speaker identification using Gaussian mixture speaker models
    • D.A. Reynolds, and R.C. Rose Robust text-independent speaker identification using Gaussian mixture speaker models IEEE Trans. Speech Audio Process. 3 1 1995 72 83
    • (1995) IEEE Trans. Speech Audio Process. , vol.3 , Issue.1 , pp. 72-83
    • Reynolds, D.A.1    Rose, R.C.2
  • 20
    • 0032762471 scopus 로고    scopus 로고
    • Statistical model-based voice activity detection
    • J. Sohn, N.S. Kim, and W. Sung Statistical model-based voice activity detection IEEE Signal Process. Lett. 6 1 1999 1 3
    • (1999) IEEE Signal Process. Lett. , vol.6 , Issue.1 , pp. 1-3
    • Sohn, J.1    Kim, N.S.2    Sung, W.3
  • 21
    • 0027623210 scopus 로고
    • Assessment for automatic speech recognition: II. NOISEX-92: A database and an experiment to study the effect of additive noise on speech recognition systems
    • A. Varga, and H.J.M. Steeneken Assessment for automatic speech recognition: II. NOISEX-92: a database and an experiment to study the effect of additive noise on speech recognition systems. Speech Commun. 12 3 1993 247 251
    • (1993) Speech Commun. , vol.12 , Issue.3 , pp. 247-251
    • Varga, A.1    Steeneken, H.J.M.2
  • 23
    • 79551480483 scopus 로고    scopus 로고
    • Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion
    • P. Vincent, H. Larochelle, I. Lajoie, Y. Bengio, and P.-A. Manzagol Stacked denoising autoencoders: learning useful representations in a deep network with a local denoising criterion J. Mach. Learn. Res. 11 12 2010 3371 3408
    • (2010) J. Mach. Learn. Res. , vol.11 , Issue.12 , pp. 3371-3408
    • Vincent, P.1    Larochelle, H.2    Lajoie, I.3    Bengio, Y.4    Manzagol, P.-A.5
  • 24
    • 84877728447 scopus 로고    scopus 로고
    • Image denoising and impainting with deep neural networks
    • J. Xie, L. Xu, and E. Chen Image denoising and impainting with deep neural networks Adv. Neural Inf. Process. Syst. 2012 341 349
    • (2012) Adv. Neural Inf. Process. Syst. , pp. 341-349
    • Xie, J.1    Xu, L.2    Chen, E.3
  • 25
    • 33745184458 scopus 로고    scopus 로고
    • Robust speech recognition based on noise and SNR classification - A multiple-model framework
    • H.-T. Xu, Z.-H. Tan, P. Dalsgaard, and B. Lindberg Robust speech recognition based on noise and SNR classification - a multiple-model framework Eur. Conf. Speech Commun. Technol. 2005 977 980
    • (2005) Eur. Conf. Speech Commun. Technol. , pp. 977-980
    • Xu, H.-T.1    Tan, Z.-H.2    Dalsgaard, P.3    Lindberg, B.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.